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Abstract—Perceiving and modeling urban crowd movements are
of great importance to smart city-related fields. Governments and
public service operators can benefit from such efforts as they can
be applied to crowd management, resource scheduling, and early
emergency warning. However, most prior research on urban crowd
modeling has failed to describe the dynamics and continuity of
human mobility, leading to inconsistent and irrelevant results when
they tackle multiple homogeneous forecasting tasks as they can only
be modeled independently. To overcome this drawback, we propose
to model human mobility from a new perspective, which uses the
citywide crowd transition process constituted by a series of transi-
tion matrices from low order to high order, to help us understand
how the crowd dynamics evolve step-by-step. We further propose a
Deep Transition Process Network to process and predict such new
high-dimensional data, where novel grid embedding with Graph
Convolutional Network, parameter-shared Convolutional LSTM,
and High-Dimensional Attention mechanism are designed to learn
the complicated dependencies in terms of spatial, temporal, and
ordinal features. We conduct experiments on two datasets gener-
ated by a large amount of GPS data collected from a real-world
smartphone application. The experiment results demonstrate the
superior performance of our proposed methodology over existing
approaches.

Index Terms—Crowd transition process, dynamic crowd flow,
urban computing, deep learning.
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I. INTRODUCTION

W ITH the rapid popularity of personal mobile devices and
Location Based Services (LBS), big human mobility

data is continuously being generated through various sources,
making it possible to perceive and model the urban crowd move-
ments by these location data. Governments and public service
operators can benefit from such efforts as these big human
mobility data imply a wealth of urban knowledge [1], which
can help tackle challenges such as crowd management [2], [3],
resource scheduling [4], and early emergency warning [5]. To
better understand human mobility, prior research mostly models
the crowd movements by two types of representation. The first
type describes the state of the crowd at a specific moment in the
form of a snapshot, such as population density [3], and travel
demand [6]. The other type is to describe the change of the
crowd over a period of time in the form of a snippet, such as
in/outflow [7], and the Origin-Destination (OD) matrix [8], [9].

However, existing crowd representation methods are hardly
satisfactory when applied to practical applications. Specifically,
snapshot data fail to describe crowd flow dynamics, which can
only be used as statistical information in specific scenarios.
Snippet data, although overcoming this problem, is limited
by the fixed time interval when describing human mobility.
Taking the OD matrix in Fig. 1(b) and (c) as an example,
these two sub-figures show the distribution of people departing
from Shinjuku station in Tokyo (marked in Fig. 1(a)) at 18:00
after 10 and 60 minutes. Different stakeholders in the city have
distinct concerns regarding crowd dynamics: for example, event
organizers focus on the short-interval matrix (i.e., Fig. 1(b))
as their main objective is to manage high-density gatherings
of people in a specific spatio-temporal locality. Conversely,
transportation departments may pay more attention to the long-
interval matrix (i.e., Fig. 1(c)) to estimate travel demand and
monitor abnormal traffic over a longer period. Both the imme-
diate and long-term perspectives are essential as they enable
informed decision-making across a range of urban applications.
Nevertheless, effectively handling these tasks concurrently is
a challenge for existing works as they are typically designed
with a single granularity focus. A compromise approach is to
train multiple isolated models, each with different OD time
interval settings and targeting a specific application. However,
since these tasks are deeply interconnected and homogeneous,
implementing separate models not only results in inefficient use
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Fig. 1. People at Shinjuku/Tokyo/Shibuya Station on a weekday evening gradually flow to other regions of Tokyo within 1 h, which are three illustrative examples
of human mobility process with respect to one specific location. Movements are shown as a mesh-grid layer overlaid on the map, with warm colors indicating
larger flows. Compared to the one-time crowd transition in (b) and (c), the crowd transition process (d) can help us understand the diffusion of the crowd.

of computational resources but also disrupts the continuity and
consistency inherent in human mobility patterns.

In this study, we investigate the modeling of citywide human
mobility from a new perspective, which is defined as citywide
Crowd Transition Process (CTP). Our aim is to integrate the
previously homogeneous problems by understanding how the
crowd dynamics evolve step-by-step. The CTP data describes
the flow of the crowd over a period of time through a series of
transition matrices. Each matrix describes the diffusion of the
population at a different timestamp during this period. Such a
set of matrices together constitutes an indicator of the current
crowd mobility. Three examples of CTP data are shown in
Fig. 1(d), where crowds at Tokyo/Shinjuku/Shibuya stations
progressively disperse to other city areas from 18:00 to 19:00
on a typical weekday evening. These six matrices at {18:10,...,
19:00} together compose a CTP tensor for one location. By
stacking the CTP tensors of all areas, we can form a citywide
CTP tensor. Compared to the traditional OD matrix that only
uses the matrix at 19:00 to describe human mobility between
18:00 and 19:00, citywide CTP data can provide us with dynamic
and continuous information within a single tensor, which allows
urban stakeholders to unify previously independent sub-tasks
into a single, consistent problem and address them under one
comprehensive framework.

Given the historical observed citywide CTP tensor, predicting
the next step of the citywide CTP tensor is a highly challenging
task that is affected by the following three aspects. 1) Sig-
nificant and Complicated Dependencies. The CTP data are
characterized by three dependencies - spatial, temporal, and
ordinal. Spatial dependency arises due to frequent interactions
and movements between different regions. Temporal depen-
dency can be seen as the inter-hour correlation. It refers to
the overall coarse-grained dependence that captures long-term
trends and patterns of mobility behavior, such as the future CTP
tensor can depend on the state of the crowd in the past few

hours. The ordinal dependency, taking Fig. 1(d) as an example,
is that the transition matrix of the later timestamp shows a
significant progressive divergence from the earlier ones, with
each matrix representing one step in a diffusion. This is a more
fine-grained dependence that captures the intro-hour fluctuations
and variations within one CTP tensor. All three dependencies
should be considered in a unified way. 2) High-dimensional
Tensor. The CTP prediction task necessitates dealing with high-
dimensional tensors due to the stacking of transition matrices.
Current models [3], [6], [7], [8], [10], [11] can struggle to handle
the high dimensionality of CTP data as they have been following
an analogous way to the image/video (up to 4D tensor) prediction
tasks. Adapting these models to the new CTP data requires extra
strategies to reduce the dimensionality such as embedding or
tensor decomposition. However, traditional embedding methods
lead to homogenizing the feature space and failing to provide
distinctive representations for CTP data as their indiscriminate
inclusion of irrelevant regions in the feature representation. A
novel embedding approach should be introduced to deal with the
relationship between information retention and compression. 3)
Data Sparsity. Crowd starting from one region rarely covers the
entire urban area after a while, resulting in a very sparse CTP
tensor. For example, the blue regions in Fig. 1(d) are empty.
Such a sparse tensor will make the model difficult to converge
and prone to skew.

To tackle these challenges, we propose a graph convolu-
tional recurrent neural network, called Deep Transition Process
Network (DTP-Net) to solve the prediction task. DTP-Net
is built as a novel high-dimensional deep neural network
which includes semantic Graph Convolutional Neural network
(GCN), shared Convolutional LSTM (ConvLSTM), and High-
Dimensional Attention (HD-Attention) modules. The network
uses these modules to decouple complex dependencies in high-
dimensional data. The semantic GCN will first learn grid embed-
ding to capture the correlation existing between regions. Then

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on June 25,2025 at 16:51:30 UTC from IEEE Xplore.  Restrictions apply. 



CAI et al.: FORECASTING CITYWIDE CROWD TRANSITION PROCESS VIA CONVOLUTIONAL RECURRENT NEURAL NETWORKS 5435

Fig. 2. Crowd-based citywide crowd prediction: density, in/out flow, and tran-
sition, analogous to video data prediction on 4D tensor (T imestep, Height,
Width, and Channel).

the shared ConvLSTM will go through the high-dimensional
data to explore the unique characteristics of each individual
region. HD-Attention is further employed to take into account
the diversity of different ordinal transitions. We conducted
experiments on two datasets generated by a large amount of
GPS mobility data. Experiment results demonstrate the superior
performance of our proposed methodology. In summary, our
work has the following contributions:
� We propose to use citywide crowd transition process as

a new perspective to model the human mobility, which
can significantly help us to understand the dynamics and
continuity of the crowd movement.

� To effectively address the prediction of citywide CTP data,
we propose a novel graph convolutional recurrent deep
learning model, which deconstructs complex dependencies
in high-dimensional data and explores them under a unified
framework.

� We validate our model on two real-world smartphone GPS
datasets. And we publish our data as the first large-scale
crowd transition process dataset to help other researchers
follow this work1.

II. RELATED WORK

Many recent studies have analyzed human mobility data and
they are summarized as a new research field called urban com-
puting [1]. Among them, citywide human mobility prediction
has been a representative branch of research. According to
the modeling strategy, it could be divided into two categories:
trajectory-based prediction and crowd-based prediction. The
trajectory-based methods directly model trajectories as typical
sequential data, whereas the crowd-based methods map trajecto-
ries to urban subregions and then do aggregation and prediction.

A. Trajectory-Based Mobility Prediction

Many trajectory-based deep learning models were proposed
to predict each individual’s movement [12], [13], [14]. [12]
extended a regular RNN by utilizing time and distance specific

1https://github.com/deepkashiwa20/DTP-Net

transition matrices to propose an ST-RNN model for predicting
the next location. DeepMove [13], considered as a state-of-the-
art model for trajectory prediction, designed a historical attention
module to capture periodicity and augment prediction accuracy.
VANext [14] further enhanced DeepMove by proposing a novel
variational attention mechanism. Besides, some studies focus
on modeling millions of individuals’ mobility for perceiving
crowd movements at big events. [15], [16] simulated human
emergency mobility following disasters. CityMomentum [17]
predicted the rare behavior of each individual in a social crowd.
DeepUrbanMomentum [18] further extended CityMomentum
to an online deep learning version. In our experiment, we im-
plement DeepMove [13] and DeepUrbanMomentum [18] as the
trajectory-based baselines.

B. Crowd-Based Mobility Prediction

The crowd-based mobility modeling methods divide a city
into several regions, then the urban crowd movement can be
revealed by aggregating the trajectory information of each re-
gion [19]. Depending on the statistical strategy, these methods
can be further divided into three categories.

Crowd Density Prediction: The number of objects in each
region can be regarded as density. Based on regions, predict-
ing citywide crowd density with historical T imestep obser-
vations can be represented by a tensor of shape (T imestep,
Height, Width, Channel=1) as demonstrated in Fig. 2. Den-
sity prediction is often used for gathering emergency warnings
or travel demand prediction. DeepUrbanEvent [3] designed a
multitask encoder-decoder to predict multiple-step crowd den-
sity. DeepSD [20], DMVST-Net [6], and Periodic-CRN [10]
predicted taxi demand using the taxi request dataset collected
from car-hailing companies. CoST-Net [21] predicted multiple
transportation demands using both taxi and bike data.

In/Out Flow Prediction: Forecasting the citywide crowd flow
based on mesh-grids has been proposed and addressed by [2]. As
illustrated in Fig. 2, they define inflow and outflow to represent
how many people will flow into or out of a certain region.
The prediction data can be represented by a tensor (T imestep,
Height, Width, Channel=2), where Channel stores the in-
flow and outflow. [2], [7], [22] have built deep learning models
using deep neural network (DNN) and convolutional neural net-
work (CNN) to make citywide predictions. Since then, a series of
deep learning models are proposed to improve the performance
of ST-ResNet [7], including STDN [23] and DeepSTN+ [11].
Some research, such as DeepCrowd [24] and STRN [25], have
been proposed to solve fine-grained flow forecasting problems.

Crowd Transition Prediction: Since the in/out flow can’t indi-
cate the source and destination of the crowd, researchers further
investigated the crowd transition modeling. As illustrated by
Fig. 2, citywide crowd transition can depict how a crowd move
among the entire mesh-grids. The problem can be represented
by a tensor (T imestep, Height, Width, Channel=Height×
Width), or (T imestep, N , N ) where N = Height×Width.
MDL [8] utilized Multitask Learning to simultaneously model
and predict crowd in/out flow and crowd transition. [27], [28]
conducted transition estimation from aggregated population data
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TABLE I
COMPARISON BETWEEN VARIOUS CROWD-BASED DATA REPRESENTATIONS

(SHAPE AS IN NON-EUCLIDEAN OR EUCLIDEAN SPACES)

and [29] estimates the transition populations using inflow and
outflow.

It is worth mentioning that in addition to the division of
urban areas into mesh-grids, recent studies have also ex-
plored spatio-temporal modeling in non-euclidean space. Graph
convolution-based models have shown great success in such
tasks. For example, STGCN [30], ASTGCN [31], MTGNN [32],
STJGCN [33], and GraphWaveNet [34] for predicting urban
traffic speed data demonstrate the efficiency and effectiveness of
such designs [35]. ST-MGCN [36], Stg2seq [37], and Dynamic-
GRCNN [38] constructed graphs to model the relationships
between irregular regions and utilized GCN for predicting pas-
senger demand and flow. GEML [9] and ODCRN [26] predicted
the OD matrix via a novel graph neural network. STTN [39] com-
bined GCN and Transformer to dynamically model long-range
spatial-temporal dependencies.

We summarize the representation of the crowd-based mobility
data in Table I, where modeling tensor, data shapes, and typical
prediction models are explicitly compared. In the next section,
we will introduce how to construct the new crowd transition
process tensor.

III. CITYWIDE CROWD TRANSITION PROCESS

To be general, in this study, we use the object to denote
different GPS data sources generated by people, vehicles, bi-
cycles, and so on. The trajectory of each object can be retrieved
through the object uid (u) from trajectory database T . Given
a spatial city area map divided into N = H ×W mesh-grids
{g1, g2, . . ., gN}, the trajectory of each object Tu is linearly
interpolated using a constant sampling rate Δt and then mapped
onto mesh-grids as follows:

Tu = (t1, g1), . . ., (tn, gn) ∧ ∀k ∈ (1, n] , |tk − tk−1| = Δt.
(1)

Definition 1 (Citywide crowd transition): Citywide crowd
transition utilizes a matrixΩ∈RN×N to store how many objects
transit from one grid to the others during the next time period,
which is defined as follows:

Ωt,Δt
ij = |{u|Tu.gt = gi ∧ Tu.gt+Δt = gj}|, (2)

where | · | denotes the cardinality of a set. Ωt,Δt is 1-order
transition matrix that stores the number of transitions from the
timestamp t to timestamp t+Δt, Ωt,2Δt is 2-order transition
matrix that stores the number of transitions from the timestamp
t to timestamp t+ 2Δt, and so on.

Definition 2 (Citywide crowd transition process): Citywide
crowd transition process Ot is defined as a list of consecutive

Fig. 3. Illustration of transition process prediction.

λ-order transition matrices as follows:

Ot = {Ωt,Δt,Ωt,2Δt, . . .,Ωt,λΔt}. (3)

Here, we simplify the citywide crowd transition process as Ot

= {Ωt,1, Ωt,2,..., Ωt,λ} ∈R
N×N×λ by omitting the time interval

Δt, through which the crowd transition from the 1st order to
λ-th order could be retrieved.

Problem 1 (Citywide crowd transition process prediction):
Given observed α-steps of citywide crowd transition process
tensorXin = {Ot1 ,...,Otα−1 ,Otα} and metadataMtα (calendar,
weather, etc.), the prediction for the next step of citywide crowd
transition process Ôtα+1

is modeled as follows:

Ôtα+1
= argmax

Otα+1

P (Otα+1
| Ot1 , . . .,Otα−1 ,Otα ,Mtα)

∀i ∈ (1, α] , ti − ti−1 = λΔt. (4)

A description of the crowd transition process tensor can be
referred to Table I. We also give an illustration of the crowd
transition process prediction task in Fig. 3, where the process in
the future (18:00∼19:00) is predicted by the last observations
(6 hours from 12:00 to 18:00). Regarding our definition, the
following points should be clarified:
� What is the difference between crowd transition and

crowd transition process? Crowd transition is a one-time
(single-order) transition matrix, while crowd transition
process is a list of transition matrices from 1-order to
λ-order.

� What is the input for prediction of crowd transition and
crowd transition process? Given historical observations
and N mesh-grids, the former is represented by (α, N , N ),
while the latter is represented by (α, N , N , λ).

� What is the output for prediction of crowd transition
and crowd transition process? The next step of crowd
transition is represented by (N , N ), while the next step of
crowd transition process is represented by (N , N , λ).

IV. DEEP TRANSITION PROCESS NETWORK

Given the observed citywide Crowd Transition Process
(CTP) tensor Xin ∈ R

α×N×N×λ, there are three dependencies
along the tensor axis are required to be addressed: spatial de-
pendence on the second and third dimensions (N,N), temporal
dependence on the α dimension, and ordinal dependence on
the λ dimension. We propose Deep Transition Process Network
(DTP-Net) to decouple the dependencies in high-dimensional
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Fig. 4. Illustration of the structure of DTP-Net.

data by three sequential steps: 1)embedding the correlation
between neighbor grids; 2)inferring the future transition process
of each gird, and 3)considering the diversity among different
transition orders, which presents a novel technique to address
the great challenge of mining complex dependencies in CTP
data. Fig. 4 presents an overview of our model. DTP-Net takes
CTP data and metadata as input. The network first learns grid
embedding by graph convolution based on the local transition
descriptors, and then the embedding data is aggregated with
the original CTP data and metadata as a fused tensor. After
extracting the latent tensor from the fused tensor by the shared
ConvLSTM, the final prediction of 1 to λ order crowd transition
matrices are obtained by the high-dimensional attention mech-
anism. In what follows, we will present the technical details for
each part.

A. Semantic Grid Embedding Via Graph Convolution

The frequent flow of people between two regions indicates a
strong correlation between them, which in turn affects the crowd
transition of one grid by the other. Integrating this dependency
for each grid will assist in predicting how transitions will change
in the future. Therefore, we design a local transition descriptor
and perform grid embedding to explore interactions between
different grids.

Local Transition Descriptor: We do the grid embedding for
each order of the CTP data separately. Given the transition
matrix of order o, an embedding captures correlations between
grids by placing semantically similar grids close together in the

Fig. 5. Illustration of different designs of the grid feature.

embedding space. In practice, current embedding methods [8],
[9] consider the destination distribution vector Ωt,o

i ∈ R
1×N

of grid gi as its raw features. All features from the correlated
grids of gi are summed with learnable weights to produce the
embedding result of gi. However, this processing method is not
suitable for the CTP prediction task. Since the inactive and
low-speed people account for the majority of the population
most of the time, the destination distribution of one grid roughly
follows a two-dimensional normal distribution centered on itself
as shown in Fig. 5(a), which means that the crowd destination
distribution will surround the neighboring regions of the source
grid, while the distant regions are sparsely populated. If we take
the destination from this grid to the whole city as its raw feature
(encircled by the red rectangle in Fig. 5(a)), after flattening and
stacking all the grid features, the feature matrix will exhibit a
crisscross structure that large values are concentrated on the
diagonal. An example is shown in Fig. 5(b). The element at
(0, 0) represents the number of people transiting from g0 to its
nearest grid so it is a very large value. In contrast, the element
at the parallel position (99, 0) represents crowd from g99 to its
farthest grid so it is close to zero. Embedding such a matrix
is relatively difficult: the feature space will be homogenized
and over-smoothed after the weighted summation, which cannot
provide us with a distinctive embedding representation for each
grid.

To address this issue, we ignore the sparse distant regions but
only focus on the dense neighbors of the source grid. We propose
a new descriptor to characterize the grid instead of using the
simple raw transition vector. As the green rectangular shown in
Fig. 5(a), we utilize a kernel window with a shape of S = s× s,
which regards the crowd transition from gi to its near neighbors
as the local transition descriptor of gi. The flattened vector of
the local transition descriptor serves as the new original feature
of the grid. Zero paddings are used for the grid of city borders.
The local transition descriptors bring us to avoid the problem
of over-smoothing after multi-layer convolution operations, as
after stacking the descriptor for each grid over the entire city,
the resulting local feature matrix Ψt,o ∈ R

N×S will appear
structurally as Fig. 5(c), which makes it possible to maintain the
consistency of the semantic structure while retaining important
crowd transition information. The local transition matrix will
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subsequently be input to the semantic GCN to gather correlations
between grids.

Semantic Grid Embedding: As the different grids of the city
are connected by roads and railways, the crowd transition in the
mesh-grid map is analogous to message propagation in a graph,
indicating that non-local relationships exist in the transition data.
Since the limitation of CNN on gathering such non-local spatial
dependency, we utilize Graph Convolutional Network (GCN) on
crowd transition data based on the semantic adjacency matrix
to learn grid embedding. The adjacency relation in the city is
modeled as a semantic graph as G = (V,E,A), where V is the
set of grids,E is the set of edges, andA is the semantic adjacency
matrix defined by the transition intensity as follows,

Ai,j =

∑T
t=1

∑λ
o=1O(t, i, j, o)∑T

t=1

∑N
j=1

∑λ
o=1O(t, i, j, o) + ε

, (5)

where T represents all available observation steps. ε is a small
value close to zero preventing the denominator from being zero.

Existing research generalizes the CNN to GCN from two
directions. The first one is the spectral-based method that defines
graph convolutions in the spectral domain after the graph Fourier
transforming [40]. The second one is the spatial-based method
that aggregates the features of one node and its neighbors to
form a new representation for the node [41], [42]. Since the
spatial-based GCN has higher efficiency and flexibility, after
getting the semantic adjacency matrix, we define the graph
convolution on each local transition matrix in the spatial domain
to obtain the embedding matrix as follows:

Ψo
l+1 = σ(AΨo

lW
o
l ), (6)

where W o
l is the learnable parameters in the l layer and σ is

the activation function. Note that we set the output dimension
of the final embedding layer to N for subsequent operations.
1 to λ order embedding matrices are concatenated to form the
embedding tensor Et ∈ R

N×N×λ.
Through the semantic GCN, we capture the correlation be-

tween grids. Furthermore, due to the embedding tensor only
containing partial information of the original CTP data, and
external information such as date and weather can have a signif-
icant influence on human mobility, we fuse the raw CTP data,
embedding data, and metadata together to form the fused tensor
as follows:

Ft = Ot ⊕ Et ⊕Mt (7)

Xfu = {Ft−α+1, . . .,Ft−1,Ft}, (8)

where Mt ∈ R
N×N×1 is the output of the metadata Mt go

through fully connected layers. ⊕ denotes the concatenation
operator. Xfu ∈ R

α×N×N×γ is the fused tensor series and γ =
2× λ + 1.

B. Transition Inferring Via Shared ConvLSTM

The inter-grid correlation and external influences are taken
into account in the fusion tensor Xfu by semantic GCN. Ad-
ditionally, the possible future distribution of the transition is

Fig. 6. Illustration of shared ConvLSTM module for transition inferring. The
module first expands the input 4D tensor to a 6D tensor, then a parameter-shared
ConvLSTM operator moves along the first two axes to extract features. The
output tensor converts the expansion back to the same shape as the input.

then required to be inferred based on the temporal dependencies
along with the embedding vectors. We propose to use Con-
vLSTM [43] as our sequential analysis component to capture
the global spatio-temporal patterns within the CTP data, as it
has been successfully applied in various time series prediction
tasks and has proven to be a powerful tool for modeling data se-
quences [3], [44]. However, the fused tensorXfu ∈ R

α×N×N×γ

breaks the real spatial proximity, i.e., the neighbors indexed by
(N,N) do not represent the physically adjacent grids, making it
meaningless to perform the convolution operation directly on it.
Therefore, we expandN to (H,W ), and then the unfolded tensor
Xre ∈ R

α×H×W×H×W×γ will preserve the spatial adjacency
between grids.

However, applying ConvLSTM, which typically deals with
video-like 4D data, to such a 6D tensor is a non-trivial task.
One major challenge is the potential loss of valuable spatio-
temporal information when encoding multiple dimensions into
a single channel to make it compatible with the ConvLSTM
architecture. This can reduce the ability of the model to capture
complex patterns in the data. Additionally, when dealing with
high-dimensional data, the computational complexity associated
with 6D tensors also increases, requiring the learning of a large
number of parameters and posing a risk of over-fitting.

To address this problem, we propose a novel parameter-
sharing ConvLSTM mechanism. Since the relationships be-
tween the grids have been embedded in the data in Section IV-A,
we can focus on each grid individually when dealing with Xre.
The parameter-sharing mechanism is borrowed from convolu-
tional neural networks, where the ConvLSTM cell slides over
the 6D tensor as a convolution kernel slides over an image.
This means that the feature extractor of one grid in the city
is applied to the other grids as well. Specifically, as shown in
Fig. 6, we first reshape and swap the axes of Xfu, so that it
becomes Xre ∈ R

H×W×α×H×W×γ . Then the ConvLSTM cell
moves along the first two axes of Xre to extract features for
the 6D tensor. The output tensors will be concatenated and
reshaped back to the same shape as the input to achieve multi-
layer stacking. The parameter-sharing mechanism enhances the
generalization ability of the model by reducing the parameter
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space, making the computation concise and efficient. In addition,
repeated training of a ConvLSTM cell alleviates the problem
of divergence due to data sparsity, which provides us with a
good latent representation of CTP data. Accordingly, the shared
ConvLSTM layer can be formulated as follows:

it(i, j) = σ(Wxi ∗ Xre(i, j, t) +Whi ∗ Ht−1(i, j)

+Wci � Ct−1(i, j) + bi)

ft(i, j) = σ(Wxf ∗ Xre(i, j, t) +Whf ∗ Ht−1(i, j)

+Wcf � Ct−1(i, j) + bf )

C̃t(i, j) = tanh(Wxc ∗ Xre(i, j, t) +Whc ∗ Ht−1(i, j) + bc)

Ct(i, j) = ft(i, j)� Ct−1(i, j) + it(i, j)� C̃t(i, j)
ot(i, j) = σ(Wxo ∗ Xre(i, j, t) +Who ∗ Ht−1(i, j)

+Wco � Ct(i, j) + bo)

Ht(i, j) = ot(i, j)� tanh(Ct(i, j)), (9)

where W is weight, b is bias, ∗ denotes the convolution operator
and � represents Hadamard product.

C. Multi-Order Learning Via Attention

As shown in Fig. 1(d), as the period between 18:00 and 19:00
progresses, objects become increasingly dispersed throughout
the city, resulting in a varied distribution of transition matri-
ces of different orders. This necessitates taking diversity into
account while predicting the transition process. Naturally, the
attention mechanism can be used to highlight the most relevant
information in the latent representation, which helps capture
the unique distribution of each transition order. The attention
mechanism operates by assigning different weights to the latent
representation based on their relevance to the prediction order,
enabling it to focus on the most important elements generated
by the shared ConvLSTM while suppressing the less important
ones. Originally, attention models accept a two-dimensional
tensor (T imestep, Feature) as input, and generated a one-
dimensional attention feature vector. Nevertheless, the compu-
tation of attention involves a matrix multiplication operation
between the query, key, and value matrices, which have a size
proportional to the length of the sequence and the dimension of
the hidden representation. This leads to the computation time in-
creasing quadratically, making it computationally intensive and
prohibitively expensive for the high-dimensional CPT tensor.

In this study, we propose an efficient High-Dimensional At-
tention (HD-Attention) mechanism to handle the computation
of the transition process. The module extends the original atten-
tion module by taking a 6D tensor C ∈ R

H×W×α×H×W×γ gen-
erated by the shared ConvLSTM ( (9)) as input and outputs a 4D
attention tensor Ω̂ ∈ R

H×W×H×W . HD-Attention decomposes
the attention calculation into each city region by first computing
self-attention scores on the spread tensor along the temporal
dimension. It then weights each element with the scores and
applies 1D convolution to obtain a compact 4D tensor. Finally,
the compact representation of the city as a whole is multiplied

by a learnable parameter matrix to fine-tune the result based on
the characteristics of each city region and process order. The
formulas for the HD-Attention block are listed as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

zt = tanh(WQ · Ct(i, j) + bQ)

ϕt =
ezt∑
j e

zj

D(i, j) = Conv(
∑α

t=1 ϕt · Ct(i, j))
Ω̂ = WS ◦ D,

(10)

Here, WQ is the weight and bQ is the bias, Ct(i, j) is the t-th
hidden state outputted by shared ConvLSTM. WS are learnable
parameters for adjusting the degree of transition in different
city areas at different orders. Conv is a convolutional opera-
tion with one convolutional filter, and ◦ is Hadamard product
(i.e., element-wise multiplication). Note that Ct(i, j) is a 3D
tensor (H , W , Filter), WQ and WS have (H ×W × Filter)
and (H ×W ×H ×W ) learnable parameters, respectively.
Through the HD-Attention, the complexity of the computation is
reduced to a linear relationship of the input dimensions, which
greatly improves the efficiency while ensuring that the model
captures the ordinal dependency.

For each transition order prediction within the next hour,
we construct an independent HD-Attention branch to consider
the diversity among them. Defining the output as {Ω̂α+1,1,
Ω̂α+1,2,..., Ω̂α+1,λ}, then the model can be trained by mini-
mizing the sum prediction error for each branch as follows:

L(θ)=

λ∑
o=1

β‖Ω̂α+1,o − Ωα+1,o‖2 +
∣∣∣∣∣

Ω̂α+1,o − Ωα+1,o

(Ω̂α+1,o+Ωα+1,o)/2

∣∣∣∣∣ ,
(11)

where θ are all learnable parameters in the DTP-Net. β is a
hyperparameter to adjust the loss weight. The loss function
consists of mean square error and mean absolute percentage
error to avoid the training being dominated by large values.

We summarize the optimization process of DTP-Net as de-
tailed pseudo-code in Alg. 1. During the training process, we
first build the semantic adjacency matrix A by (5) and the local
transition descriptorLt from the historical crowd transition pro-
cess tensorOt (Lines 2-3). We then combine them with metadata
Mt to construct a training sample (Line 7). We randomly select
a batch of samples to feed into DTP-Net, apply the gradient
descent approach, and update the model parameters θ by (11)
(Line 13). The trained model is obtained after a maximum
number of epochs.

V. EXPERIMENT

A. Setting

Dataset: A smartphone application called Yahoo! Bousai is
developed by Yahoo Japan Corporation to provide early infor-
mation and warnings in response to different disasters such as
earthquakes, rain, snow, and tsunamis in Japan. To precisely send
local disaster alerts to users in relevant areas, the app collects
real-time GPS trajectory data anonymously with the consent of
users. The GPS logs are being generated from around 6 million
users. The file size of each day is about 50 GB, containing
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Algorithm 1: Training Process of DTP-Net.
Require: Historical crowd transition process tensor:
O1, . . .,OT ; Metadata: M1, . . .,MT ;

Ensure: Learned DTP-Net Model;
1: Initialization;
2: Build the semantic adjacency matrix A using (5);
3: Build the local transition descriptor tensor L1, . . .,LT ;
4: for ∀t ∈ [α, T ] do
5: Itrs = [Ot−α, . . .,Ot];
6: Iloc = [Lt−α, . . .,Lt];
7: Append {(Itrs, Iloc,Mt, A),Ot+1} to Dtrain;
8: end for
9: Initialize all learnable parameters θ in DTP-Net;

10: repeat
11: Randomly select a batch Dbt from Dtrain;
12: Calculate gradient ∇g(θ) using (11);
13: Update θ ← θ + α∇g(θ);
14: until Stopping criteria is met;
15: returnLearned DTP-Net;

approximately 800 million GPS records. Each record includes
the user ID, timestamp, latitude, and longitude. In this study, data
from Tokyo and Osaka cities are selected as the target datasets
(named TokyoCTP and OsakaCTP), and 100 consecutive days
(i.e., 2017/4/1/ to 2017/7/9) are chosen as the target period.

Preprocessing: To address the sparseness, noise, and skewing
of the data, we perform data cleaning and denoising before using
linear interpolation to obtain 10-minute uniformly sampled cali-
brated human trajectories, (i.e.,Δt = 10minutes). Furthermore,
we set λ to 6, then the time intervals of 1 to 6 order transition ma-
trices are 10 min, 20min..... 60 min, and the time interval of two
consecutive CTP tensors is 60 min. By setting ΔLon.=0.0125
and ΔLat.=0.0083 (approximately 1000 m×1000 m), each
metropolitan area is partitioned into a 20×20 mesh-grid map,
then according to the Definition 2, the citywide CTP tensor can
be generated from trajectories and represented by two tensors
with the shape of (2400, 400, 400, 6). We normalize tensors to
the range [0, 1] and rescale predicted tensors back to the normal
values. One-hot encoding is used to transform the metadata
(i.e., WeekOfYear, DayOfWeek, HourOfDay, and Holidays).
The details of the dataset are summarized in Table II.

Setup: We apply an 80/20 training/test split on the dataset,
and further select 20% of the training set as the validation set
to adjust hyperparameters. The observation step α is set to 6. 1
GCN layer with the kernel window shape of 5×5 local transition
descriptor is utilized to get embedding tensor. The kernel size
of shared ConvLSTM is set to 3 and the number of filters is 32.
The depth of the shared ConvLSTM in transition inferring is
set to 1. β is set to 1e9 to balance the loss scale. An early-stop
Adam algorithm is used to control the overall training process,
where the batch size is set to 1 and the learning rate is 0.001.
Experiments are performed on a GPU server with two TESLA
P40 graphics cards.

Metrics: We evaluate the overall performance based on three
metrics: RMSE (Rooted Mean Squared Error), MAE (Mean

TABLE II
SUMMARY OF EXPERIMENTAL DATASETS

Absolute Error), and MAPE (Mean Absolute Percentage Error).

RMSE =

√√√√ 1

n

n∑
i

||Ŷi − Yi||2 (12)

MAE =
1

n

n∑
i=1

|Ŷi − Yi| (13)

MAPE =
100%

n

n∑
i=1

∣∣∣∣∣
Ŷi − Yi

(Ŷi + Yi)/2

∣∣∣∣∣ (14)

where n is the number of samples, Y and Ŷ are the ground-truth
tensor and predicted tensor.

B. Baseline Models
� CopyYesterday: We use the value of the same time from

the previous day as the predicted value.
� CopyLastFrame: We use the most recent observation as the

predicted value.
� DeepUrbanMomentum [18]: DeepUrbanMomentum is

proposed to predict individual trajectory. This model de-
signs an RNN architecture to utilize one person’s recent
observations to predict his next multi-step movements.

� DeepMove [13]: DeepMove is an advanced individual
trajectory prediction model with an attention mechanism
and user embedding. It combines information from both
recent observations and historical movements.

� ConvLSTM [43]: Convolutional LSTM is first introduced
for precipitation nowcasting. It extends convolutional input
and recurrent transformations to LSTM to handle video-
like spatio-temporal prediction problems.

� ST-ResNet [7]: ST-ResNet is proposed to predict crowd
flow of each region in a city. This model merges the time
and flow dimensions together and uses three branches of
CNN network to extract the seasonality of the data.

� MDL [8]: Flow prediction based on multi-task learning is
an improved version of ST-ResNet, which can predict the
crowd flow and transition at the same time.

� DeepCrowd [24]: A novel deep learning model for large-
scale citywide crowd density and in-out flow prediction,
by designing pyramid ConvLSTMs, 4D high-dimensional
attention block, and early-fusion mechanism.

� STGCN [30]: A spatio-temporal traffic speed data pre-
diction model that combines graph convolution with 1D
convolution.
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TABLE III
OVERALL PERFORMANCE EVALUATION

� MTGNN [32]: A general graph neural network framework
that fuses external knowledge and one-way relationships
between variables through a graph learning module.

� STTN [39]: The latest graph model proposes Spatial Trans-
former and Temporal Transformer modules to dynamically
model long-range spatial-temporal dependencies in traffic
data.

� GraphWaveNet [34]: A popular graph multivariate mod-
eling model that uses parametric graph inputs and a
WaveNet-like temporal dilated structure.

� GEML [9]: The origin-destination matrix prediction model
is a state-of-the-art graph-based transition prediction
model that utilizes graph embedding and periodic-skip
LSTM to predict the OD matrix.

For trajectory-based baselines (i.e., DeepUrbanMomentum
and DeepMove), we used these models to predict each per-
son’s movements for the next 6 steps, then aggregated the
predictions to form the citywide CTP tensor to make it com-
parable to our model. For crowd-based baselines (i.e., Con-
vLSTM, ST-ResNet, MDL, DeepCrowd, STGCN, MTGNN,
STTN, GraphWaveNet, and GEML), since they can not di-
rectly handle the high-dimensional CTP data, for each method,
we trained six separate models for the 1 to 6 order crowd
transition matrix prediction respectively, then concatenated the
six results to form the predicted CTP tensor. Some statistical-
based methods such as SARIMA and VAR have difficulty han-
dling such high-dimensional data, so we did not compare with
them.

C. Performance Comparison

1) Effectiveness Evaluation: Overall Performance: Table III
presents experiment results under three evaluation metrics of
our model and baselines. We observe that (1) the state-of-the-art
trajectory-based model cannot effectively handle the CTP data
prediction problem. Their results are even worse than the simple
baseline of CopyLastFrame. (2) Crowd-based models demon-
strate the potential to solve the problem of CTP data prediction.
The effect of these methods has advantages over other types
of methods. (3) DTP-Net performs best among all crowd-based
models under all metrics, and there is a significant improvement

compared with other methods: the results of RMSE show that
DTP-Net is relatively 42% and 16% better than the second-best
model on two datasets.

Result Analysis: First, the poor performance of the trajectory-
based model is because these models only focus on the accuracy
of the current trajectory but ignore the crowd behaviors. The
crowd transition at a citywide level follows some periodic distri-
butions and patterns, which are difficult to capture by trajectory-
based models. Then, for existing crowd-based models, current
processing methods used for high-dimensional spatio-temporal
data primarily involve dimensionality reduction, which can lead
to colossal information loss and thus compromise the accuracy of
the model. Furthermore, for the citywide CTP prediction prob-
lem, all the crowd-based baselines require the construction of six
separate models for prediction, which fail to capture the ordinal
correlation of the CTP data. Finally, our proposed DTP-Net
utilizes grid embedding, shared ConvLSTM, and HD-Attention
to capture complex dependencies in a simultaneous and unified
way, which supports the model achieve optimal performance
compared to all baselines.

2) Efficiency Evaluation: In addition to comparing predic-
tive accuracy, we also present efficiency comparisons of differ-
ent methods in terms of computation time and neural network
complexity, as they are important when deciding which method
to use in real-world applications. The results are presented in
Fig. 7. Based on the results, we observe that the proposed
DTP-Net obtains a fairly competitive performance compared
to all baselines, being above average in critical factors regard-
ing time and storage, presenting an ideal trade-off in practical
applications. Among the considered baselines, it achieves the
best performance with 7x faster and 25x smaller compared to
the second highest performing method DeepCrowd. Moreover,
DTP-Net requires almost the same training time as the fully
convolutional networks like ST-ResNet and MDL. This is be-
cause these baselines require training multiple models sepa-
rately for transition process prediction, which significantly drags
down the computation time. Accordingly, DTP-Net demon-
strates a superior characteristic in terms of prediction perfor-
mance, training efficiency, and storage occupation, making it
a recommended solution for real-world CTP data prediction
tasks.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on June 25,2025 at 16:51:30 UTC from IEEE Xplore.  Restrictions apply. 



5442 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 7. Comparison of model complexity and training time.

Fig. 8. Illustration of the hyper-parameter study.

Fig. 9. Influence of β on the model performance.

D. Ablation Test

To provide a comprehensive understanding of each compo-
nent in DTP-Net, we conducted a series of experiments to val-
idate the effectiveness of each module. We used GCN, Shared,
and HD to represent the semantic GCN, shared ConvLSTM, and
HD-Attention module of DTP-Net, respectively. Furthermore,

TABLE IV
PERFORMANCE EVALUATION OF VARIANT MODELS

different variants of the semantic GCN were also evaluated.
The abbreviations S and D are used to represent whether the
Semantic adjacency matrix or the inverse Distance matrix is
used as the adjacency matrix. The abbreviations L and G are
used to represent whether the Local transition descriptor (Fig.
5(c)) or the Global transition descriptor (Fig. 5(b)) is used as
the raw grid embedding features. All the results are shown in
Table IV, we can observe that,
� Even the simplest variant can achieve satisfactory results.

It is because the shared ConvLSTM module helps us avoid
compressing tensors so that high-dimensional data could
be disposed of better.

� Both Shared+HD and Shared+GCN(S/L) achieve better
results, which demonstrates the effectiveness of these mod-
ules. The improvement is due to the semantic GCN further
encoding the knowledge from the correlated grids to the
feature matrix, and the HD-Attention module enables each
branch to focus on the unique distributions of each transi-
tion matrix.

� The low performance of Shared+GCN(D/L) indicates that
the geographically adjacent regions may be weakly corre-
lated. Besides, the performance of Shared+GCN(S/G) is
worse than Shared+GCN(S/L), suggesting that the global
transition descriptor can not provide the best grid embed-
ding result.

E. Hyper-Parameter Study
� The Depth of Shared ConvLSTM: Fig. 8(a) shows the

effect of shared ConvLSTM layer depth on both datasets.
The results show that deeper networks yield lower RMSE
values, indicating better performance. Due to memory and
efficiency limitations, we only tested up to a depth of 3 and
ultimately chose a depth of 1 as the experimental setup.

� The Depth of Semantic GCN: Fig. 8(b) illustrates the
impact of semantic GCN layer depth on two datasets. The
results indicate that the depth of the GCN layer has little
effect on model accuracy. This is because the semantic
adjacent matrix already captures all correlated grids within
the 1-hop neighbor, eliminating the need for multi-layer
stacking to capture multi-hop relationships.

� The Filter Number of ConvLSTM: Fig. 8(c) shows the
impact of the ConvLSTM filter on two datasets. The results
indicate that wider structures improve model performance
in general. However, when the network width exceeds
48, the performance of the model becomes worse in both

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on June 25,2025 at 16:51:30 UTC from IEEE Xplore.  Restrictions apply. 



CAI et al.: FORECASTING CITYWIDE CROWD TRANSITION PROCESS VIA CONVOLUTIONAL RECURRENT NEURAL NETWORKS 5443

Fig. 10. Visualization of the crowd transition process from 2017-06-23 18:00 to 2017-06-23 19:00 w.r.t Tokyo Station. The top row shows the ground truth value
and the bottom row shows the prediction of DTP-Net. Each of the six columns from left to right shows the increasingly higher-order transition within this hour.
Warmer colors represent higher transition values.

Fig. 11. Time-series RMSE on Tokyo Station from 2017-07-03 to 2017-07-10.

datasets, which is considered a typical vanishing gradient
problem where very wide models cannot be fully trained.

� The Window Size of Local Transition Descriptor: We evalu-
ated the effect of window size of local transition descriptor
as shown in Fig. 8(d). The best results are obtained on
the two datasets when the window size is 5, which shows
the advantage of making good use of local information
compared to using more global information.

� The Loss Weight β: The β in the loss function is used to
balance the impact of both large and small errors, which
can provide a fair view of the model’s performance and
help it learn to make more accurate predictions. We try to
evaluate how β has impacts on the model’s performance.
Fig. 9 shows the sensitivity analysis results of β, where
scatters represent the scores of model RMSE and MAPE
under different β settings on TokyoCTP dataset. We find
that with the increase of β, the MAPE shows a gradually
increasing trend, while RMSE decreases first, reaches the
minimum whenβ is 1e9, and then begins to increase. Based

on this observation, we set β to 1e9 to balance the trade-off
between the two metrics.

F. Case Study

We conducted two case studies on TokyoCTP to verify the
prediction performance at a fine-grained spatio-temporal gran-
ularity. First, we plot time-series RMSE on Tokyo Station from
2017-07-03 to 2017-07-10 (the last week of test data). Based on
the overall performance in Table III, we select the second-best
model DeepCrowd [24] as a comparison. Through Fig. 11, we
observe that DTP-Net almost outperforms DeepCrowd at each
timestamp on Tokyo Station, and our model has a relatively
stable effect at all times, while the DeepCrowd exhibits large
performance fluctuations at the rush hour.

Second, we present a visualization to further illustrate the ef-
ficacy of our model using Fig. 10. The figure shows six columns
of heat maps of crowd transition processes in Tokyo, captured
during the evening rush hour from Tokyo Station, where each
map represents the progression of crowd transition from Tokyo
Station at increasing time intervals. The top row showcases the
actual values, and the bottom row shows the predicted results
from DTP-Net. The side-by-side comparison demonstrates our
DTP-Net model effectively captures the primary patterns, trends,
and magnitudes of crowd movements. As observed, the model
accurately predicts the initial crowd dispersal from Tokyo Sta-
tion to surround the Tokyo perimeter, further expanding into
four prominent streams - two towards the north, one to the east,
and one to the south. Importantly, these accurate predictions
can provide invaluable insights for various urban applications
like city planning, traffic management, and event organization,
allowing relevant stakeholders to optimize resources, improve
public services, and effectively respond to dynamic urban needs.

VI. CONCLUSION

In this study, we model human mobility from a new perspec-
tive that uses the citywide crowd transition process to describe

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on June 25,2025 at 16:51:30 UTC from IEEE Xplore.  Restrictions apply. 



5444 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

the urban crowd movement dynamics. A graph convolutional
recurrent model called DTP-Net is designed to process and
predict the high-dimensional crowd transition process data. The
model utilizes graph convolution based on the local transition de-
scriptor, parameter-sharing ConvLSTM, and high-dimensional
attention modules to simultaneously capture all spatial, tempo-
ral, and ordinal dependencies. Experimental results based on
two big real-world human trajectory datasets demonstrated the
state-of-the-art performance of our model.

In the future, we intend to use a semi-sharing parameter mod-
ule to take the characteristics of different locations into account
and fuse more heterogeneous data to further boost performance.
We also prepare to explore the simulation and prediction of new
patterns of the crowd transition process in event situations, based
on techniques such as lifelong learning, online learning, and
concept drift adaptation. Also, based on our prediction model,
we will build a real-time citywide crowd management prototype
system to serve the general public, which can be used for urban
computing critical issues such as traffic forecasting, anomaly
analysis, and event or disaster response.
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