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Abstract—Predicting the density and flow of the crowd or traffic at a citywide level becomes possible by using the big data and cutting-

edge AI technologies. It has been a very significant research topic with high social impact, which can be widely applied to emergency

management, traffic regulation, and urban planning. In particular, by meshing a large urban area to a number of fine-grained mesh-

grids, citywide crowd and traffic information in a continuous time period can be represented with 4D tensor (Timestep, Height, Width,

Channel). Based on this idea, a series of methods have been proposed to address grid-based prediction for citywide crowd and traffic.

In this study, we revisit the density and in-out flow prediction problem and publish a new aggregated human mobility dataset generated

from a real-world smartphone application. Comparing with the existing ones, our dataset holds several advantages including large

mesh-grid number, fine-grained mesh size, and high user sample. Towards this large-scale crowd dataset, we propose a novel deep

learning model called DeepCrowd by designing pyramid architectures and high-dimensional attention mechanism based on

Convolutional LSTM. Lastly, thorough and comprehensive performance evaluations are conducted to demonstrate the superiority of the

proposed DeepCrowd comparing to multiple state-of-the-art methods.

Index Terms—Crowd density, crowd flow, urban computing, deep learning, ubiquitous and mobile computing

Ç

1 INTRODUCTION

NOWADAYS, massive urban human mobility data are being
generated from mobile phones, car navigation systems,

and traffic sensors. Many studies have analyzed these big
mobility data with cutting-edge technologies, which have
been summarized as urban computing. In particular, crowd or
traffic prediction at a citywide level becomes an emerging
topic in both academia and industry, as it can be of great
importance for emergency management, traffic regulation,
and urban planning.As illustrated in Fig. 1, bymeshing a large
urban area to a number of fine-grained mesh-grids, citywide
crowd density in a continuous time period can be represented
with a four-dimensional tensor RTimestep�Height�Width�Channel in

an analogous manner to video data, where each Timestep can
be seen as one video frame,Height, Width is two-dimensional
index for mesh-grids, and each Channel stores an aggregated
scalar value for each mesh-grid. Following this representation,
as shown in Table 1, a series of studies [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12] have been conducted to address grid-
based urban computing problems such as crowd in-out
flow prediction, taxi demand prediction, and traffic accident
prediction. These forecasts can be provided to governments
(e.g., police) and public service operators (e.g., subway or
bus company) to protect people’s safety or maintain the
operation of public infrastructures under event situation
(e.g., New Year Countdown); to ride-sharing companies
like Uber and Didi Chuxing to more effectively dispatch
the taxis; to web mapping services like Yahoo Japan Map
(https://map.yahoo.co.jp/congestion?lat=35.67299&lon=
139.74330&zoom=12&maptype=basic) and Itsumo-Navi
(https://lab.its-mo.com/densitymap/) to improve the func-
tionality of crowd density map service.

Specifically, we focus on the grid-based prediction on city-
wide crowd density and in-out flow. The crowd density pre-
diction is to predict how many people will be in each mesh-
grid at the next timestamp, and the crowd in-out flow predic-
tion is to predict how many people will flow into or out from
each mesh-grid in next time interval. Both tasks take multiple
steps of historical observations as input and output the next-
step prediction result. Although the deep models in Table 1
have been proposed to address such tasks, their actual effects
on citywide crowd density and in-out flow prediction at a city-
wide level are still not well validated on large-scale and high-
quality datasets. As shown in Table 2, the datasets used in
most of the works so far are originally generated based on taxi
or bicycle Origin-Destination (O-D) data, which don’t cover
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and reflect the citywide crowd density and flow.Moreover, the
scales of the datasets are small due to the limitations in terms of
the number ofmesh-grids, the granularity ofmesh size, and the
number of user samples. For example, TaxiNYC data is gener-
ated from bicycle O-D data, that only has 20 � 10 mesh-grids
with 1km. A large-scale dataset for citywide crowd density and
crowd in-out flow prediction tasks is needed to validate the
actual performance of the deep spatiotemporalmodels.

Thus, in this study, we first publish a new crowd flow
dataset at a citywide scale with high-quality. Our new data-
set is created using the GPS log data collected from a popu-
lar smartphone app published by Yahoo Japan Corporation,
which can well reflect the real-world crowd flow informa-
tion. After doing interpolation to the raw GPS trajectory
data and aggregation with citywide mesh grids, 4D tensors
RTimestep�Height�Width�Channel representing citywide crowd
density and in-out flow can be generated. The scale of our
new dataset is large on the following aspects: (1) larger spa-
tial area; (2) finer mesh size; (3) higher user sample. The
existing models are found to deliver a weaker performance
on our new dataset than the small-scale datasets, because as
the spatial domain becomes 4�16 times larger than before,
the complexity of the problem also increases a lot. Then we
design a new deep learning model called DeepCrowd to
capture the large-scale citywide spatiotemporal dependen-
cies from the 4D sequential data.

To pursue the computation efficiency for citywide predic-
tion, instead of predicting the crowd density and in-out flow
for eachmesh-grid, we employ a “citywide to citywide” com-
putation mechanism. Convolutional LSTM (ConvLSTM) [13]
is utilized as the basic component of our prediction model to
handle our high-dimensional data. In particular, to capture
the large spatial dependency at a citywide scale, ConvLSTMs
are stacked in a pyramid and hierarchical architecture for bet-
ter utilizing low-resolution and high-resolution feature maps.
To automatically capture the temporal dependency from his-
torical observations in different stages, 4D attention block is
implemented based on ConvLSTM to obtain an overall

representation of the inputs. Moreover, we employ an early-
fusion mechanism to better utilized the meta/external infor-
mation. It should be noted that to validate the pure ability of
grid-based modeling on spatiotemporal data, unified objec-
tive function is adopted for model training, and extra data
source such as Point-Of-Interest(POI) data and the related
processing module are excluded from the models. Finally, we
evaluate our model with four metrics including MSE, RMSE,
MAE, and MAPE, and do a thorough comparison with the
state-of-the-arts listed in Table 1. In summary, our work has
four-fold contributions as follows:

� We propose a complete framework from preprocess-
ing to deep learning models for predicting citywide
crowd density and crowd in-out flow.

� We generate and publish new datasets called Bousai-
TYO and BousaiOSA for crowd density and in-out
flow prediction from a real-world smartphone app,
which have larger scale and higher quality than the
previous datasets. Our dataset will be officially pub-
lished after this paper is accepted.

� We develop a novel deep learning model called
DeepCrowd for large-scale citywide crowd density
and in-out flow prediction, by designing pyramid
ConvLSTMs, 4D high-dimensional attention block,
and early-fusion mechanism.

� We implement multiple state-of-the-art methods, and
conduct a thorough evaluation using a series of met-
rics. The experiment results demonstrate both the effec-
tiveness and efficiency of our citywide crowd
predictionmodel for two big cities Tokyo andOsaka.

The remainder of this paper is organized as follows. In
Section 2, we introduce data preprocessing and give prob-
lem definition. In Section 3, we provide a description of the
datasets. In Section 4, we explain the implemented models.
In Section 5, we present the evaluation results. In Section 6,
we briefly recap some other related works. In Section 7, we
give our conclusion and discuss future work.

2 PRELIMINARY

2.1 Data Preprocessing

Without loss of generality, in this study, we use object to refer
to people, vehicle, and bicycle in different GPS data sources.
An object’s GPS trajectory is represented by a sequence of
3-tuple: (timestamp, latitude, longitude), which be further sim-
plified as a sequence of (t, l)-pair. Object trajectory is stored
and indexed by day (i) and object id (o) in the database G.

Fig. 1. Citywide crowd density in Tokyo within 1 hour.

TABLE 1
Summary of the State-of-The-Arts

Model Reference Dataset (* means Open) Prediction Task

ST-ResNet [1] AAAI 2017 TaxiBJ*, BikeNYC* Taxi In-Out Flow (Traffic)
DMVST-Net [2] AAAI 2018 Didi Taxi Request Taxi Demand (Traffic)
Periodic-CRN [3] IJCAI 2018 TaxiBJ*, TaxiSG Taxi Density&Taxi In-Out Flow (Traffic)
Hetero-ConvLSTM [4] KDD 2018 Vehicle Crash Data* Traffic Accident (Traffic)
STDN [5] AAAI 2019 TaxiNYC*, BikeNYC-II* Taxi&Bike O-D Number (Traffic)
DeepSTN+ [6] AAAI 2019 MobileBJ, BikeNYC-I* Crowd&Taxi In-Out Flow (Crowd&Traffic)
MDL [7] TKDE 2019 TaxiBJ, BikeNYC Taxi Transition&Taxi In-Out Flow (Traffic)
DeepUrbanEvent [8] KDD 2019 Konzatsu Toukei Crowd Density&Crowd Flow (Crowd)
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Given a time interval Dt, each object’s trajectory on each day
Gio is calibrated to obtain constant sampling rate as follows:

Gio ¼ ðt1; l1Þ; . . . ; ðtk; lkÞ; 8j 2 1; k½ Þ; jtjþ1 � tjj ¼ Dt:

Then given the mesh-grids of an urban area {g1; g2,...,g
Height �Width}, trajectory Gio is mapped onto mesh-grids
as follows:

Gio ¼ ðt1; g1Þ; . . . ; ðtk; gkÞ; 8j 2 1; k½ �; lj 2 gj:

This preprocessing has been illustrated in Fig. 2. After this,
density video and in-out flow video can be aggregated and
generated with the processed trajectories with constant
sampling rate according to the definitions below.

2.2 Problem Definition

Definition 1 (Density and In-Out Flow): Crowd density at
timestamp t in mesh-grid gm is defined as follows:

dtm ¼ jfojGo:gt ¼ gmgj:
According to [9], [10], crowd in-out flow between consecutive
timestamps t-1 and t inmesh-grid gm is defined as follows:

f
ðinÞ
tm ¼ jfojGo:gt�1 6¼ gm ^ Go:gt ¼ gmgj

f
ðoutÞ
tm ¼ jfojGo:gt�1 ¼ gm ^ Go:gt 6¼ gmgj:

Then, by representing the mesh-grids with a 2D index
(H;W ), crowd density and in-out flow video containing T
consecutive frames can be represented by a 4D tensor
RT�H�W�C , where channel C for density and in-out flow are
equal to 1 and 2 respectively. Here, Min-Max normalization
is used to scale the scalar values into [0, 1].

Definition 2 (Density and In-Out Flow Prediction): Given
historical observations of crowd density and in-out flow xd
= d1; . . . ; dt, xf = f1; . . . ; ft at timestamp t, building predic-
tion models for the next-step density and in-out flow yd =
dtþ1, yf = ftþ1 is to obtain such parameters ud, uf that can
minimize the objective function Lð�Þ respectively as follows:

ud ¼ argmin
ud

LðŶd; YdÞ

uf ¼ argmin
uf

LðŶf ; YfÞ;

where Mean Squared Error (MSE) = jjY -Ŷ jj22 is uniformly
utilized as Lð�Þ in our study to better validate the prediction
capability of our proposed deep learning model.

3 LARGE-SCALE CITYWIDE CROWD DATASET

BousaiTYO and BousaiOSA.Yahoo Japan Corporation provides
a smartphone application to give early information andwarn-
ing towards different disasters such as earthquake, rain,
snow, and tsunami. Users are required to provide their loca-
tion information so that Bousai App can precisely send local
disaster alerts to the users in relevant areas. Also, real-time
GPS trajectory data are anonymously collected under users’
consent for real-time notification and research purposes. GPS
logs will be generated when the smartphone user stops
staying at one location and starts moving by identifying
the change of current location. Every day since 2017, the
GPS logs are being generated from around 1 million
users (approximately 1 percent of the total population of
Japan). The file size of each day is about 18 GB, contain-
ing approximately 150 million GPS records. Each record
includes user ID, timestamp, latitude, and longitude. The
sampling rate of each user’s GPS data is approximately
20 records per day. We select two big cities in Japan
(Tokyo1 and Osaka2) as target urban areas, 100 consecu-
tive days from 2017/4/1/ to 2017/7/9 as target time
period. We crop the raw GPS trajectory data in this

Fig. 2. The illustration of data preprocessing is listed, through which the
raw trajectory data with inconstant sampling rate will be calibrated to the
trajectories with constant sampling rate. For example, when Dt is set to
10 minutes, the raw trajectory snippet {l1, l2, l3} timestamped at
{09:14:10, 09:27:53, ..., 09:51:40} will be converted to a calibrated trajec-
tory snippet {l01, l

0
2, ..., l

0
4} constantly timestamped at {09:10:00, 09:20:00,

..., 09:40:00}. The coordinate value of l03 is calculated through linear
interpolation based on l2 and l3.

TABLE 2
DataSet Summary

Dataset Data Type Mesh Size H, W Time Period, Interval Maximum Value

BousaiTYO Density, In-Out Flow 450m�450m 80, 80 2017/4/1/-2017/7/9, 0.5 hour 2300�, 1200�

BousaiOSA Density, In-Out Flow 450m�450m 60, 60 2017/4/1/-2017/7/9, 0.5 hour 1800�, 770�

TaxiBJ In-Out Flow unknown 32, 32 inconsecutive 4 parts, 0.5 hour 1292
BikeNYC In-Out Flow unknown 16, 8 2014/4/1-2014/9/30, 1 hour 267
BikeNYC-I In-Out Flow unknown 21, 12 2014/4/1-2014/9/30, 1 hour 737
BikeNYC-II In-Out Flow 1km�1km 10, 20 2016/7/1-2016/8/29, 0.5 hour 307
TaxiNYC In-Out Flow 1km�1km 10, 20 2015/1/1-2015/3/1, 0.5 hour 1289

�According to the company policy of Yahoo Japan Corporation, the most significant two digits are recorded here.

1. Tokyo: Longitude 2 [139.50, 139.90], Latitude 2 [35.50, 35.82]
2. Osaka: Longitude 2 [135.35, 135.65], Latitude 2 [34.58, 34.82]
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spatiotemporal range out. As data preprocessing, we first
conduct data cleaning and noise reduction to the raw
GPS trajectory data, and then do linear interpolation to
make sure each user’s 24-hour (00:00�23:59) GPS log has
a constant sampling rate with Dt equal to 5 minutes.
Then we mesh each area with DLon: = 0.005 DLat: = 0.004
(approximately 450m�450m), which results 80 � 80 and 60 �
60mesh-grids respectively for each city.We get one timestamp
every 30 minutes, so there are 4800 timestamps (100 days �
48/day) in total. According to Definition 1, crowd density and
in-out flow are generated for each timestamp. To further elimi-
nate the concerns of user privacy problem, K-anonymization
is conducted by setting the scalar values less than 10 to 0.
Finally, for Tokyo dataset BousaiTYO, the density and in-out
flow video can be represented by tensor (4800, 80, 80, 1) and
(4800, 80, 80, 2) respectively; for Osaka dataset BousaiOSA, the
density and in-out flow video can be represented by tensor
(4800, 60, 60, 1) and (4800, 60, 60, 2) respectively.

TaxiBJ is taxi in-out flow data used by [1], [3], created
based on the taxi GPS data in Beijing from four separate
time periods: 2013/7/1-2013/10/30, 2014/3/1-2014/6/30,
2015/3/1-2015/6/30, and 2015/11/1-2016/4/10. BikeNYC
is bike in-out flow data used by [1], taken from the NYC
Bike system from 2014/4/1 to 2014/9/30. Similar datasets
BikeNYC-I, BikeNYC-IIwere used by [6] and [5] respectively.
TaxiNYC is taxi in-out flow data used by [5], created from
the NYC Taxi data in 2015. The details of our new dataset
and the existing ones are given in Table 2. Through it, we
can see the following advantages of our new dataset:

1) Large mesh-grid number. The H;W is 80,80 for
Tokyo and 60,60 for Osaka, which are much larger
than the TaxiBJ, BikeNYC and TaxiNYC.

2) Fine-grained mesh size. Our mesh size is set to 450
meters, finer than TaxiNYC and BikeNYC, while the
mesh size settings in some datasets are unknown.

3) High user sample. The maximum values of crowd
density and crowd in-out flow are much bigger than
the existing ones.

4) Density and in-out flow. Our datasets contain both
crowd density and in-out flow while other datasets
only contain taxi/bike in-out flow.

Most importantly, our dataset can better reflect the real-
world citywide crowd as it is generated based on a real-world
smartphone appwith large active users rather than taxi or bike
O-D data. A series of visualization results about BousaiTYO
density data have been listed as Fig. 3. The visualization results
on the upper side also demonstrate that our datasets have a
high crowd density over fine-grained mesh-grids in a large
urban area (there are many crowded regions colored with
red). The three time-series of crowd density over 100 days (i.e.,
4,800 timestamps) in Tokyo station, Shinjuku station, and
TokyoDisneyland all show clear periodical patterns.

4 DEEP LEARNING MODEL

How to do the citywide crowd density and in-out flow pre-
diction on such large-scale data becomes a new challenge
for us. For big cities like Tokyo and Osaka, the crowd

Fig. 3. One snapshot of BousaiTYO density at 2017/4/1 09:00:00 is listed on the upper left, where the red color represents the highest density and the
blue color represents the lowest density. The crowd density distribution over the 6,400 mesh-grids is plotted on the upper right. Time-series of crowd
density over 100 days (4,800 timestamps) in Tokyo station, Shinjuku station, and Tokyo Disneyland is plotted at the bottom.
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density and in-out flow inside a certain mesh-grid could be
highly correlated with the ones in other mesh-grids, as peo-
ple can transit from one mesh-grid in north to another in
south by taking a train within 30 minutes. We select two
mesh-grids in Tokyo area to calculate the pearson correla-
tion value between them and other mesh-grids, one is the
Tokyo Station grid, the biggest station in Tokyo, another is
the Nakano Station grid, a relatively small station in Tokyo.
As depicted by Fig. 4, the highly correlated mesh-grids with
yellow color distribute over almost the entire urban area
(i.e., 80*80 mesh-grids). More importantly, the two stations
demonstrate two very different correlation patterns, that is
to say, for citywide crowd prediction over each mesh-grid,
we need to take the complex and compound dependency
over the entire spatial domain into account.

On the other hand, apart from the effectiveness, the com-
putation efficiency is also an indispensable factor for us
to consider. In terms of the computation schemes, the state-
of-the-art prediction models can be categorized into
two types. One is city-unit prediction including ST-ResNet
[1], Periodic-CRN [3], DeepSTN+ [6], MDL [7], and DeepUr-
banEvent [8]. These models output the prediction result for
the entire urban area at a time. Another is grid-unit predic-
tion like DMVST-Net [2] and STDN [5]. The models predict
one specific mesh-grid at each time. When the spatial
domain or the mesh-grid number of the dataset is small like
TaxiNYC (H;W = 10,20) or BikeNYC (H;W = 16,8), the
grid-unit models could somehow work under an acceptable
efficiency. However, for crowd flow dataset with large spa-
tial domain (huge number of mesh-grids) like BousaiTYO
(H;W = 80,80) or BousaiOSA (H;W = 60,60), the models
that take each mesh-grid as computation unit could be too
cumbersome to work, as the computation complexity of
grid-unit model isH*W times larger than city-unit model.

Based on the above, it drives us to design a real citywide
model that can work effectively and efficiently to deal with
the complex spatiotemporal dependencies on the large-scale
crowd data. Thus, in this study, we propose a new deep
learning model called DeepCrowd, the feature and struc-
ture of which will be described in the following.

4.1 Model Feature

4.1.1 Spatiotemporal Feature

As mentioned above, we take the entire spatial domain as
the feature rather than a certain mesh-grid or a couple of

mesh-grids. Temporally, the next step of citywide crowd
density and in-out flow could be correlated with historical
observations from different time periods. ST-ResNet [1] first
designs a set of unique features namely Closeness, Period,
and Trend, which correspond to the recent time intervals, daily
periodicity, and weekly trend respectively. Intuitively, the
three parts of the features can be represented by:

XCloseness = [Xt�lc ,Xt�ðlc�1Þ, ...,Xt�1]
XPeriod = [Xt�lp�sp ,Xt�ðlp�1Þ�sp , ...,Xt�sp ]
XTrend = [Xt�lq�sq ,Xt�ðlq�1Þ�sq , ...,Xt�sq ]
where lc, lp, lq are the sequence length of Closeness,

Period, Trend, sp and sq are the time span of Period and
Trend, the Closeness span sc is equal to 1 by default. This
feature was also inherited by DeepSTN+ [6]. ST-ResNet[1]
and DeepSTN+ [6] converted the 4D tensor (H;W; T , C) to
3D tensor (H;W; T *C) by concatenating the channels at each
timestep, through which the features lose their temporal
order and function like an image rather than a video. In our
study, we aim to build a deep learning model to learn the
temporal trends corresponding to different time periods.
Each trend should be continuous and consistent in observa-
tion step (i.e., number of frames) as illustrated by Fig. 5.

Thus, we modify the Closeness, Period, and Trend fea-
tures to theHour,Day, andWeek features as follows:

XHour = [Xðt�DHÞ�T ,Xðt�DHÞ�ðT�1Þ, ...,Xðt�DHÞ�1]
XDay = [Xðt�DDÞ�T ,Xðt�DDÞ�ðT�1Þ, ...,Xðt�DDÞ�1]
XWeek = [Xðt�DWÞ�T ,Xðt�DWÞ�ðT�1Þ, ...,Xðt�DWÞ�1]
where XHour, XDay, and XWeek represent the trends corre-

sponding to the current (i.e., hourly trend), the previous day
(i.e., daily trend), and the previous week (i.e., weekly trend),
T is the observation step in each trend. The time interval of
Bousai dataset is 30 minutes, thus DH is set to 0, DD is set to
48, and DW is set to 7�48.

4.1.2 External Feature

External information such as date, weather, and event also
have significant influences on crowd density and crowd in-out
flow. For example, as shown in Fig. 4, the crowd density dur-
ing the weekday at Tokyo Station could be much higher than
the weekend. And as mentioned in Section 1, to validate the
pure ability of modeling spatiotemporal data, only date infor-
mation for the next step (the prediction timestamp) will be uti-
lized as external information and auxiliary input in our study.
Specifically, V E is a vector with 57 dimensions (57 features)
containing time of day (48 features), day of week (7 features),
weekday flag (1 feature), and holiday flag (1 feature).

4.2 Model Structure

Based on the spatiotemporal and external features, Deep-
Crowd is elaborately built to automatically capture the

Fig. 5. From {Closeness, Period, Trend} to {Hour, Day, Week}.

Fig. 4. Left is pearson correlation matrix between the crowd density in
Tokyo Station grid (34, 53) and other mesh-grids; Right is pearson corre-
lation matrix between the crowd density in Nakano Station grid (28, 33)
and other mesh-grids.
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citywide spatial dependencies and the multiple stages of
temporal dependencies analogously to video modeling
task. We explain each component of DeepCrowd neural net-
work in the following. To be easy to understand, we sum-
marize the operator notation as Table 3.

4.2.1 Convolutional LSTM

Convolutional LSTM (ConvLSTM) [13] extends the fully con-
nected LSTM (FC-LSTM) to have convolutional structures in
both the input-to-state and state-to-state transitions and
achieves a lot of successes on video modeling tasks due to its
superior performance in capturing both spatial and temporal
dependency thanCNNor LSTM. Thus, ConvLSTM is utilized
as the basic component to handle our high-dimensional
sequential data analogously to video modeling tasks. Hidden
state ht in a ConvLSTM is calculated iteratively from t = 1 to T
for an input sequence of framesX = ½x1; x2; . . . ; xT � as follows:

it ¼ sðWxi � xt þWhi � ht�1 þWci 	 ct�1 þ biÞ
ft ¼ sðWxf � xt þWhf � ht�1 þWcf 	 ct�1 þ bfÞ

ct ¼ ft 	 ct�1 þ it 	 tanhðWxc � xt þWhc � ht�1 þ bcÞ
ot ¼ sðWxo � xt þWho � ht�1 þWco 	 ct þ boÞ

ht ¼ ot 	 tanhðctÞ;

(1)

where W is weight, b bias vector, * denotes the convolution
operator and 	 represents Hadamard product. The function
fConvLSTMð�Þ refers to the set of operations in Eq. (1).

Early External-Info Fusion. ST-ResNet [1] and Periodic-
CRN [3] adopt late-fusion mechanism to combine the
external information at the end of the network by using
fully connected layer or simple convolutional layer. Here,
in our framework, we employ early-fusion mechanism to
let ConvLSTM better explore the complex interactions
between spatio-temporal data and meta data at a 4D
level. Meta-info vector V E is first sent to two fully con-
nected (FC) layer and then reshaped to a 4D tensor XE =
(Timestep, Height, Width, Channel = 1) as illustrated by
Eq. (2). As Eq. (3) indicates, XE will be concatenated with
4D “video” tensor XHour, XDay, XWeek at the beginning of
the network. This kind of early input mechanism for
external information processing enables the model to
deeper fuse multiple heterogeneous data and faster con-
vergence.

XE ¼ ReLU½Wfc2 �ReLUðWfc1 � V E þ bfc1Þ þ bfc2 � (2)

XH; XD; XW  ½XHour;XE�; ½XDay;XE �; ½XWeek;XE�: (3)

4.2.2 Pyramid ConvLSTMs

So far, we can simply stack multiple ConvLSTM layers
to handle the video-shape 4D tensors [XH; XD; XW].
However, to capture the citywide spatial dependency for
a large spatial domain like BousaiTYO (H;W = 80,80) or
BousaiOSA (H;W = 60,60), stacking multiple layers of
ConvLSTMs is not enough, even infeasible. Assuming
we stack n convolution layers with (f; f) kernel size and
no padding and striding, the region size that a neuron at
the final convolution layer can see is (f-1)�n+1, (f-1)�n
+1. Theoretically, it requires 40 convolution layers with
(3,3) kernel size to model the (H;W = 80,80) spatial
domain of BousaiTYO, which will definitely invoke the
vanishing gradient problem. Therefore, we propose pyra-
mid ConvLSTMs to extract and utilize pyramid and hier-
archical features, which has shown the great success to
reinforce the performance of the computer vision models
such as Feature Pyramid Networks [14], Mask R-CNN
[15], and Faster R-CNN [16]. In pyramid ConvLSTMs as
shown in Fig. 6, the outputs from the lower ConvLSTM
layers are concatenated with the upper layers to better
combine information from both low-resolution and high-
resolution feature maps. The latent representations
derived from pyramid ConvLSTMs are considered to
contain richer spatial information than the ones from
plain ConvLSTMs. In addition, pyramid ConvLSTMs can
shorten the distance from the input to output which func-
tions similarly as deep residual networks, but pyramid net-
works do not require to build a very deep network to gather
the upper-level features from the input. The pyramid
ConvLSTM blocks for eachX in [XH; XD; XW] are the same,
sowe list the formulas for oneX = ½x1; x2; . . . ; xT � as follows:

½h1; h2; . . . ; hT � ¼ fConvLSTM#ð½x1; x2; . . . ; xT �Þ (4)

TABLE 3
Notation of Operator

Operator Meaning

� Dot Product
	 Hadamard Product

Convolution Operation
½; � Concatenate Operation
+ Vector Addition

 Tensor Addition

Fig. 6. The architecture of our deep learning model.

JIANG ETAL.: DEEPCROWD: A DEEP MODEL FOR LARGE-SCALE CITYWIDE CROWD DENSITYAND FLOW PREDICTION 281

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on June 25,2025 at 16:55:36 UTC from IEEE Xplore.  Restrictions apply. 



½hð1Þ1 ; h
ð1Þ
2 ; . . . ; h

ð1Þ
T � ¼ f

ð1Þ
ConvLSTM#ð½h1; h2; . . . ; hT �Þ
:::

½hðlÞ1 ; h
ðlÞ
2 ; . . . ; h

ðlÞ
T � ¼ f

ðlÞ
ConvLSTM#ð½hðl�1Þ1 ; h

ðl�1Þ
2 ; . . . ; h

ðl�1Þ
T �Þ;

where fConvLSTM# denotes a downsampling ConvLSTM
with stride equal to (2,2) and the h are the hidden states gen-
erated by the downsampling ConvLSTM layer.

½pðlÞ1 ; p
ðlÞ
2 ; . . . ; p

ðlÞ
T � ¼ f

ðlÞ
UpSamplingð½hðlÞ1 ; h

ðlÞ
2 ; . . . ; h

ðlÞ
T �Þ (5)

½qðlÞ1 ; q
ðlÞ
2 ; . . . ; q

ðlÞ
T � ¼ f

ðlÞ
ConvLSTM$ð½hðl�1Þ1 ; h

ðl�1Þ
2 ; . . . ; h

ðl�1Þ
T �Þ

½sðlÞ1 ; s
ðlÞ
2 ; . . . ; s

ðlÞ
T � ¼ ½pðlÞ1 ; p

ðlÞ
2 ; . . . ; p

ðlÞ
T � 
 ½qðlÞ1 ; q

ðlÞ
2 ; . . . ; q

ðlÞ
T �

:::

½pð1Þ1 ; p
ð1Þ
2 ; . . . ; p

ð1Þ
T � ¼ f

ð1Þ
UpSamplingð½sð2Þ1 ; s

ð2Þ
2 ; . . . ; s

ð2Þ
T �Þ

½qð1Þ1 ; q
ð1Þ
2 ; . . . ; q

ð1Þ
T � ¼ f

ð1Þ
ConvLSTM$ð½h1; h2; . . . ; hT �Þ

½sð1Þ1 ; s
ð1Þ
2 ; . . . ; s

ð1Þ
T � ¼ ½pð1Þ1 ; p

ð1Þ
2 ; . . . ; p

ð1Þ
T � 
 ½qð1Þ1 ; q

ð1Þ
2 ; . . . ; q

ð1Þ
T �

½p1; p2; . . . ; pT � ¼ fUpSamplingð½sð1Þ1 ; s
ð1Þ
2 ; . . . ; s

ð1Þ
T �Þ

½q1; q2; . . . ; qT � ¼ fConvLSTM$ð½x1; x2; . . . ; xT �Þ

½s1; s2; . . . ; sT � ¼ ½p1; p2; . . . ; pT � 
 ½q1; q2; . . . ; qT �
where fConvLSTM$ denotes a special ConvLSTM with stride
equal to (1,1) and kernel equal to (1,1), fUpSampling denotes an
upsampling operation with size equal to (2,2), p and q are
intermediate hidden states, and s is the added hidden state
generated by the upsampling ConvLSTM layer. By combin-
ing Eqs. (4) and (5), we could abstract the pyramid
ConvLSTMs as follows:

½s1; s2; . . . ; sT � ¼ fPyramidConvLSTMsð½x1; x2; . . . ; xT �Þ: (6)

4.2.3 Attention ConvLSTMs

Crowd density and in-out flow prediction is taken as high-
dimensional sequential modeling task, which is non-trivial
to capture the compound dependencies from the historical
observations of different time periods, i.e., XHour, XDay,
XWeek, totally 3*T citywide crowd images. Mentioning the
long-term sequential modeling, LSTM plus attention mech-
anism [17] has been seen as a state-of-the-art technique.
Especially, in the urban computing filed, LSTM plus
attention has achieved a lot of success on individual’s
next-location prediction (DeepMove [18]), time predic-
tion for each road path (DeepTTE [19]), and traffic vol-
ume and flow prediction (STDN [5]). Thus, we employ
attention mechanism to our ConvLSTM-based model,
through which we aim to learn how much each hidden
state generated by the pyramid ConvLSTMs (Eq. (6))
will match the next prediction frame. Originally, for
LSTMs, an attention block takes a 2D tensor (Timestep,
Feature) as input, and outputs a 1D attention Feature

vector. Now, for ConvLSTMs, we extend the original
attention block to take a 4D tensor (Timestep, Height,
Width, Filter) as input, and output a 3D attention tensor
(Height, Width, Filter). The formulas for the attention
block are listed as follows:

zi ¼ tanhðWatt � si þ battÞ (7)

ai ¼ eziP
j e

zj

hatt ¼
XT
i¼1

ai � si:

Here,Watt is the weight and batt is the bias, si is the ith hidden
state in ½s1; s2; . . . ; sT � outputted by pyramid ConvLSTMs. The
function fAttentionð�Þ refers to the set of operations in Eq. (7).
Note that si is a 3D tensor (Height,Width, Filter), andWatt has
(Height � Width � Filter) learnable parameters. Through
fAttentionð�Þ, the hidden states of pyramid ConvLSTMs ½s1; s2;
. . . ; sT � will be dynamically fused as one attention state
denoted as hatt. For eachS in {SH, SD, SW}, we utilize one inde-
pendent attention block to generate an attention state, namely

h
ðHÞ
att , h

ðDÞ
att , h

ðWÞ
att . Then the list of attention states ½hðHÞatt , h

ðDÞ
att , h

ðWÞ
att �

will be further fed into another attention block to fuse the three

attention states as a final attention state denoted as h
ðallÞ
att .

Eq. (8) and (9) formulate the process above.

h
ðHÞ
att ¼ f

ðHÞ
Attentionð½sðHÞ1 ; s

ðHÞ
2 ; . . . ; s

ðHÞ
T �Þ (8)

h
ðDÞ
att ¼ f

ðDÞ
Attentionð½sðDÞ1 ; s

ðDÞ
2 ; . . . ; s

ðDÞ
T �Þ

h
ðWÞ
att ¼ f

ðWÞ
Attentionð½sðWÞ1 ; s

ðWÞ
2 ; . . . ; s

ðWÞ
T �Þ

h
ðallÞ
att ¼ f

ðallÞ
Attentionð½hðHÞatt ; h

ðDÞ
att ; h

ðWÞ
att �Þ: (9)

After the two levels of attention blocks, we utilize one
convolution layer with (1,1) kernel window to get the final
prediction result as follows:

by ¼ ReLUðWconv � hðallÞatt þ bconvÞ; (10)

The overall architecture of DeepCrowd is shown as Fig. 6.

5 EXPERIMENT

5.1 Setup and Setting

We set the observation step T to 6 and {DH, DD, DW} to {0, 7,
7�48} respectively. It should be noted that these settings fol-
low the ones widely used and well tuned in the state-of-the-
arts listed in Table 1. Data from the first 80 percent were set
as training data (20 percent of which were taken as valida-
tion data), and the other 20 percent were set as testing data.
Adam was employed to control the overall training process,
where the learning rate was set as one of {0.01, 0.001, 0.0005,
0.0001}. The training algorithm would either be early-
stopped if the validation error converged within 10 epochs
or be stopped after 200 epochs, and the best model on vali-
dation data would be saved. We rescaled the predicted
value back to the original value. All models were run

282 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on June 25,2025 at 16:55:36 UTC from IEEE Xplore.  Restrictions apply. 



multiple times on each dataset, and the best result would be
recorded. Keras [20] and TensorFlow [21] are used to imple-
ment the deep learning models. The experiments were per-
formed on 3 GPU servers, together with six GeForce GTX
1080Ti graphics cards and two Tesla P40 graphics cards.
Pyramid ConvLSTMs in DeepCrowd consist of three bottom-
up ConvLSTM layers with {32, 64, 128} filters of 3�3 kernel
window and three top-down ConvLSTM layers with
{128,128,128} filters of 1�1 kernel window.

5.2 Baseline

HistoricalAverage. Density and in-out flow for each time-
stamp are estimated by averaging the historical values from
the corresponding timestamp in the training dataset, and
weekday and weekend will be considered separately.

CopyYesterday. We directly copy the corresponding
observation (frame) from the previous day (yesterday) as
the result.

SimpleCNN. It is a basic deep learning predictor con-
structed with four CNN layers. The 4D tensor would be
converted to 3D tensor (H;W; T *C) by concatenating the
channels at each timestep just like the way [1] did, so that
CNN could take a 4D tensor as input. The SimpleCNN pre-
dictor utilizes four Conv layers to take the current observed
t-step frames as input and predicts the next frame as output.
The four Conv layers use a 32 filters of 3�3 kernel window,
and the fourth Conv layer uses a ReLU activation function
to output the next frame (step) of urban video. BatchNorm-
alization is added between two consecutive layers.

SimpleConvLSTM. It is a simplified predictor of Hetero-
ConvLSTM [4] constructed with four ConvLSTM layers.
Here, heterogeneous data features were excluded from Het-
ero-ConvLSTM [4] and only the pure power for capturing
spatiotemporal dependency remained. The Simple-
ConvLSTM predictor is constructed with four ConvLSTM
layers, which also takes current t-step observations as input
and predicts the next step. The ConvLSTM layers use a 32 fil-
ters of 3�3 kernel window and the ReLU activation is used in
the final layer. BatchNormalization is also added between
two consecutive layers.

ST-ResNet. Deep Spatio-Temporal Residual Networks
(ST-ResNet) [1] is a CNN-based deep learning method for
traffic in-out flow prediction. To capture citywide spatial
dependency, it employs residual learning to construct deep
enough CNN networks; To capture temporal dependency,
it first designs a set of unique features namely
Closeness; Period, and Trend, which correspond to the recent
time intervals, daily periodicity, and weekly trend respectively,
then fuses them together through three learnable parametric
matrices. Intuitively, the three sequences can be represented
by [Xt�lc , Xt�ðlc�1Þ, ..., Xt�1], [Xt�lp�p, Xt�ðlp�1Þ�p, ..., Xt�p],
and [Xt�lq �q, Xt�ðlq�1Þ�q, ..., Xt�q], where lc, lp, lq are the
sequence length of Closeness; Period; Trend, p and q are the
span of Period and Trend, the Closeness span is equal to 1
by default. 4D tensor would be converted to 3D tensor
(H;W; T *C) by concatenating the channels at each timestep.
The computation unit is the whole citywide image. Addi-
tionally, it further utilizes weather, holiday event informa-
tion, and metadata(i.e., DayOfWeek, Weekday/Weekend)
as external information. To verify the pure ability of

capturing spatial and temporal dependency, only metadata
will be utilized in our study.

DMVST-Net. Deep Multi-View Spatial-Temporal Net-
work (DMVST-Net) [2] is a deep learning method for taxi
demand prediction based on CNN and LSTM. It uses a local
CNN to capture spatial dependency only among nearby
grids; employs LSTM to capture temporal dependency only
from the recent time intervals (i.e., Closeness). The local
CNN takes one grid and its surrounding grids (i.e., S � S
region) as the input, and a separate and unshared CNN is
constructed for each timestamp. The input tensor is essen-
tially (T; S; S; 1), and the computation unit is grid (pixel)
rather than citywide image. Furthermore, it constructs a
weighted graph, where nodes are the grids, and each edge
represents the similarity of two time-series values (i.e., his-
torical taxi demand) between any two grids; then it embeds
this graph into a feature vector and concatenates it with the
main feature vector from LSTM layer. Through this, it can
improve the ability to capture citywide spatial dependency.
Similarly, in our study, only metadata will be utilized as
external information.

PCRN. Convolutional Recurrent Network with Periodic
Representation (PCRN) [3] is a ConvGRU-based deep learn-
ing model for taxi density and in-out flow prediction by
fully making use of recurrent periodic patterns. To capture
citywide spatial dependency, it builds a pyramidal architec-
ture by stacking three convolutional RNN layers. To capture
temporal dependency, it first learns a representation from
the observations of Closeness through the stacked pyrami-
dal ConvGRUs; it divides the representations into two types
of periodic patterns, namely daily and weekly pattern, each
of them is a set of periodic representations corresponding to
a specific time span (i.e., day or week); then it maintains a
memory-based dictionary to reuse and update the two types
of periodic patterns dynamically; lastly it employs a weight-
ing based fusion to merge periodic representations with the
current representation of input sequence. Thus, the input
feature can be seen as Closeness, Period, and Trend. The
computation unit is the whole citywide image. Also, only
metadata will be utilized as external information. In our
study, we replace ConvGRU with ConvLSTM and simplify
the architecture.

STDN. Spatial-Temporal Dynamic Network (STDN) [5]
is an improved version of DMVST-Net for taxi/bike Origin-
Destination number (volume) prediction. To capture spatial
dependency, it inherits the local CNN technique from
DMVST-Net, and further designs a flow gating mechanism
to fuse local flow information (i.e., flow from one central
grid to its surrounding S � S grids) with the traffic volume
information together. In terms of temporal dependency, it
improves DMVST-Net by taking not only Closeness infor-
mation but also long-term daily periodicity (i.e., Period)
into account. Moreover, it considers the temporal shifting
problem about periodicity (i.e., traffic data is not strictly
periodic) and designs a Periodically Shifted Attention Mecha-
nism to solve the issue. Specifically, it sets a small time win-
dow to collect Q time intervals right before and after the
currently-predicting one. And it uses an LSTM plus atten-
tion mechanism to obtain a weighted average representa-
tion h from the time intervals in each window. For previous
P days to be considered as Period, it gets a sequence of
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representations (h1, h2, ..., hP ), then it uses another LSTM
layer to extract the final periodic representation from the
sequence. The computation unit is grid (pixel) same with
DMVST-Net. Lastly it jointly models inflow (start traffic vol-
ume) and outflow (end traffic volume) together. The flow
gating mechanism will be pruned in our study since flow
detail information are needed.

DeepSTN+. Context-aware Spatial-Temporal Neural Net-
work (DeepSTN+) [6] is an improved version of ST-ResNet for
crowd and traffic in-out flow prediction. It directly inherits the
input features (i.e., Closeness, Period, and Trend), and enhan-
ces the ST-ResNet from the following aspects: (1) to capture
longer-range spatial dependency, it designs a uniqueConvPlus
block, and replaces the ordinary Conv-based residual unit in
ST-ResNet with ResPlus (i.e., ConvPlus-based residual unit).
Furthermore, multi-scale fusion mechanism is employed to
preserve the representation from each ResPlus layer; (2) in
terms of temporal dependency, it applies early-fusion mecha-
nism instead of end-fusion in ST-ResNet to get better interac-
tion among Closeness;Period, and Trend; (3) additionally, it
takes the influence of location function on the crowd/traffic
flow into consideration by using POI data to gain a semantic
plus. The computation unit is the whole citywide image. Simi-
larly, we prune the POI processing component from DeepSTN
+ to verity the pure spatiotemporalmodeling capability.

Multitask-DF. Multitask Learning of Crowd Density and
In-Out Flow (Multitask-DF) is a ConvLSTM-based Multitask
Learning model to jointly predict crowd density (D) and in-
out flow (F). It can be seen as a simplified variant of Multitask
DeepLearning (MDL) [7] andDeepUrbanEvent [8],wheremul-
titask learning [22] was employed to model two correlated
tasks together and gain concurrent enhancement. Themotiva-
tion comes from the following two points: (1) People tend to
follow the trend. Crowded places may attract more and more
people to visit; (2) Higher inflow will lead to higher density,
higher outflow will lead to lower density. Multitask-DF first
takesXd (t-step observed density) andXf (t-step observed in-
out flow) with two separate ConvLSTM layers; then concate-
nates two separate latent representations and passes it to two
consecutive ConvLSTM layers; finally outputs Ŷd (next-step
density) and Ŷf (next-step in-out flow) with two separate
ConvLSTM layers. The model parameters u can be trained by
minimizing the objective functionLð�Þ as follows:

u ¼ argmin
u
½�dLðŶd; YdÞ þ �fLðŶf ; YfÞ�:

SimpleConvLSTM and Multitask-DF naturally rely on the
superior performance of ConvLSTM to capture both spatial
and temporal dependency.

For all approaches, we used gird search to tune the
parameters based on the validation dataset and chose the
best set of hyperparameters. We also considered the param-
eter settings recommended by the original study. The
hyper-parameters are finely tuned as Table 4 by spending
equal amounts of effort in each.

5.3 Evaluation Metric

We evaluate the effectivenesses of the models with MSE
(Mean Squared Error), RMSE (Root Mean Square Error),
MAE (Mean Absolute Error), and MAPE (Mean Absolute
Percentage Error):

MSE ¼ 1

n

Xn
i

jjŶi � Yijj2

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i

jjŶi � Yijj2
s

MAE ¼ 1

n

Xn
i

jŶi � Yij

MAPE ¼ 1

n

Xn
i

j Ŷi � Yi

Yi
j;

where n is the number of samples, Y and Ŷ are the ground-
truth tensor and predicted tensor.

5.4 Performance Evaluation

Effectiveness Evaluation.The overall evaluation results on effec-
tiveness are summarized in Tables 5 and 6. Besides, we set the
RMSE result of ST-ResNet as the standard and give out the
relative increment DRMSE. Through them we can see that
the state-of-the-art models including our proposed model
had advantages compared with baselines (HistoricalAvera-
ge�ConvLSTM). In particular, the state-of-the-arts (ST-
ResNet�Multitask-DF) had their own advantages on differ-
ent cities, tasks, and metrics. Our proposed DeepCrowd
model becomes a dominant one, anddemonstrates the superi-
ority to the-state-of-the-arts on all of the datasets and metrics.
As the spatial domain (i.e., H;W=80,80/60,60) of the new
published dataset is much larger than the existing datasets,
the pyramid architecture plays a vital role in capture the spa-
tial dependency. Next to DeepCrowd, STDN also achieved
satisfactory performances in general. However, as the compu-
tation unit of STDN is pixel (mesh-grid), the big spatial
domain will generate a huge amount of training samples, so
the training process of STDN would take far more time than
othermodels.

Efficiency Evaluation. Besides the comparison of predic-
tion accuracy, we also provide an efficiency comparison in
terms of computational time and neural network complex-
ity among the different approaches, as these can play an
important role in practice when deciding which approach

TABLE 4
Summary of Fine-Tuned Hyper-Parameters
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to use in real-world application. First, we plot the total train-
ing time in minute for each model as Fig. 7. Through it we
can see that: (1) the overall efficiency of our proposed Deep-
Crowd was controlled at an acceptable level; (2) the training
time of DMVST-Net and STDN were far more than others
as they took mesh-grid as the computation unit; (3) ST-
ResNet holds a very clear advantage over other state-of-the-
art models from the perspective of efficiency. Second, we

study the total number of parameters for each model under
the fine-tuned hyper-parameter setting. Due to space limita-
tions, we only list the results on BousaiTYO Density and In-
Out Flow as Table 7. Through it we can see that the parame-
ter number of DeepSTN+ was far more than others as it uti-
lized fully-connected layer to capture the citywide spatial
dependency.

Discussion. Through the comprehensive evaluations, we
could find the main limitations of the state-of-the-art models
as follows: (1) ST-ResNet converts the 4D input tensor
(T;H;W;C) data to 3D tensor (H;W; T � C) to apply CNN,
thus it somehow fails to capture the real temporal depen-
dency; (2) PCRN needs to dynamically save and load the
learned representations as periodic patterns for each time-
step, which is not so effective nor efficient; (3) DMVST-Net
and STDN use local CNN to take mesh-grid (pixel) as com-
putation unit, resulting the low efficiency on training time
(nearly 1 week on BousaiTYO); (4) DeepSTN+ utilized a
fully-connected layer in ConvPlus block, which would
result in a huge number of parameters in Tokyo area (over
0.3 billion as shown in Table 7); (5) Multitask-DF needs both
density and in-out flow data for computing. In summary,
we can recommend DeepCrowd as a good solution to real-
world crowd flow (density&in-out flow) prediction task
with good balance of effectiveness and efficiency.

TABLE 6
Effectiveness Evaluation: Crowd Density and In-Out Flow Prediction on BousaiOSA

Osaka Density Osaka In-Out Flow

Model MSE RMSE MAE MAPE DRMSE MSE RMSE MAE MAPE DRMSE

HistoricalAverage 79.557 8.919 4.864 4.35% 93.60% 20.267 4.502 2.011 5.88% 29.63%
CopyYesterday 274.857 16.579 7.264 5.55% 259.87% 42.034 6.483 2.443 5.87% 86.67%
SimpleCNN 35.325 5.944 3.203 2.94% 29.02% 131.318 11.459 3.443 7.87% 229.95%
SimpleConvLSTM [13] 26.939 5.19 2.94 3.00% 12.65% 13.955 3.736 1.824 5.68% 7.57%
ST-ResNet [1] 21.222 4.607 2.9 2.93% 0.00% 12.064 3.473 1.727 5.14% 0.00%
DMVST-Net [2] 17.852 4.225 2.613 2.72% -8.29% 17.151 4.141 2.054 6.10% 19.23%
PCRN [3] 21.064 4.59 2.898 3.01% -0.37% 18.073 4.251 1.817 5.44% 22.40%
STDN [5] 22.791 4.774 2.884 2.90% 3.62% 11.579 3.403 1.782 5.35% -2.02%
DeepSTN+ [6] 32.962 5.741 3.23 3.24% 24.61% 11.449 3.384 1.646 4.96% -2.56%
Multitask-DF [8] 21.151 4.599 2.517 2.79% -0.17% 12.871 3.588 1.756 5.53% 3.31%

DeepCrowd (Ours) 16.743 4.092 2.458 2.49% -11.18% 11.382 3.374 1.565 4.96% -2.85%

Fig. 7. Efficiency evaluation: Comparison of training time in minute.

TABLE 5
Effectiveness Evaluation: Crowd Density and In-Out Flow Prediction on BousaiTYO

Tokyo Density Tokyo In-Out Flow

Model MSE RMSE MAE MAPE DRMSE MSE RMSE MAE MAPE DRMSE

HistoricalAverage 221.501 14.883 7.175 3.89% 105.82% 47.433 6.887 3.09 6.66% 48.65%
CopyYesterday 1304.393 36.116 11.804 5.16% 399.46% 148.604 12.19 4.156 6.93% 163.11%
SimpleCNN 124.657 11.165 6.101 6.49% 54.40% 49.07 7.005 3.812 8.16% 51.20%
SimpleConvLSTM [13] 81.778 9.043 4.335 2.69% 25.06% 24.237 4.923 2.54 6.07% 6.26%
ST-ResNet [1] 52.288 7.231 4.336 2.83% 0.00% 21.469 4.633 2.467 5.80% 0.00%
DMVST-Net [2] 42.726 6.537 3.918 2.51% -9.60% 34.795 5.899 2.985 6.87% 27.33%
PCRN [3] 55.676 7.462 4.653 3.10% 3.19% 22.71 4.765 2.491 6.10% 2.85%
STDN [5] 39.492 6.284 3.713 2.42% -13.10% 19.654 4.433 2.468 5.86% -4.32%
DeepSTN+ [6] 89.775 9.475 4.907 3.08% 31.03% 19.062 4.366 2.387 5.66% -5.76%
Multitask-DF [8] 49.784 7.056 3.043 2.42% -2.42% 22.185 4.710 2.451 5.97% 1.66%

DeepCrowd (Ours) 33.138 5.757 3.394 2.25% -20.38% 18.697 4.324 2.203 5.36% -6.67%
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5.5 Ablation Study

Effect of Model Components. We first give the comparison
with 6 different model variants on BousaiTYO density, as
shown in Table 8. We verify the effectiveness of our model
from spatial, temporal and external view respectively. For
the spatial view, the pyramid model structure was replaced
with a stacked ConvLSTM structure named DeepCrowd-
plain, and all ConvLSTM layers were removed named
DeepCrowd-noConvLSTM. The models without the atten-
tion structure or only with one level attention in the tempo-
ral view have the suffix of noAttention and oneAttention
respectively. LateExternal and noExternal mean fusing the
external information at the end of the model and not using
the external information respectively. We observe that our
DeepCrowd model achieves best performance against
others, which proves the effectiveness and reliability of
each module in our model.

Effect of Network Depth. Fig. 8 demonstrates the influence
of network depth on BousaiTYO density and in-out flow.
Here, the depth of the network represents the height of the
pyramid ConvLSTMs. We can observe that when the depth
of the model gets deeper, the performance of the model also
becomes better with a continuing tendency, demonstrating
that a deeper structure can better help the model gather
information from the data. However, when the network
depth comes to 4, the model performance will get worse on
both density and in-out flow. This is considered to be the
typical vanishing gradient problem, and the very deep
model could not be fully trained. Another interesting point
is that deeper models could gain better performance on in-

out flow prediction task comparing to density task. This is
because crowd in-out flow is more dynamic and globally
involved than crowd density, and deeper networks could
sense crowd flow features in a wider range.

Effect of Observation Step. Fig. 9 presents the effect of the
observation step on BousaiTYO density and in-out flow. As
the length of the input sequence grows, the MSE of the
model first decreases, showing that the longer input often
gets a better result because they can provide the model
more information on the dynamics of crowd flow. However,
the model gets worse when the observation step is greater
than 6, showing that the training process becomes more dif-
ficult and there is a balance between input information and
the model processing capabilities.

5.6 Case Study

Prediction Performance. To further verify the prediction per-
formance of our proposed model, we conduct multiple case
studies on BousaiTYO Density dataset. We pick up two pla-
ces, one is Tokyo Station, the biggest station in Tokyo,
another is Tokyo Disneyland, the most famous theme park
in Japan, to plot the ground-truth and our prediction for the
last 7 days of our dataset, i.e., 2017-07-03 (Monday)�2017-
07-09 (Sunday). The reasons we choose these two places are
as follows: (1) they are the typical representatives of two
types of areas, i.e., office and recreation; (2) they have differ-
ent levels of crowd density, i.e., Tokyo station is around five
times higher than Tokyo Disneyland. Through the time-
series plots in Fig. 10, we could find that our model gives
satisfactory prediction results on both places for the entire
week. Besides, we visualize the ground-truth and predicted
crowd densities for the entire Tokyo area during the morn-
ing rush hour on weekday, i.e., 2017-07-03 07:00:00�2017-
07-03 09:00:00. Through Fig. 11, we can observe that our
model gives a very accurate prediction over the entire 80*80
mesh-grids of Tokyo area.

Model Interpretation. We further do two case studies to
derive a better interpretation of our new model architecture.

TABLE 7
Efficiency Evaluation on BousaiTYO Density and In-Out Flow

BousaiTYO

Model Density In-Out Flow

SimpleCNN 20,929 22,946
SimpleConvLSTM [13] 187,432 189,848
ST-ResNet [1] 205,095 297,002
DMVST-Net [2] 1,578,253 1,578,253
PCRN [3] 1,284,999 1,561,352
DeepSTN+ [6] 327,820,193 327,820,546
STDN [5] 6,181,505 6,349,922
Multitask-DF [8] 266,176 266,176

DeepCrowd (Ours) 7,882,842 8,315,355

TABLE 8
Performance Evaluation of Different DeepCrowd

Structures on BousaiTYO Density

BousaiTYO Density

Model Variant MSE RMSE MAE MAPE

DeepCrowd-plain 33.784 5.812 3.454 2.30%
DeepCrowd-noConvLSTM 49.673 7.048 4.033 2.72%
DeepCrowd-noAttention 36.182 6.015 3.528 2.33%
DeepCrowd-oneAttention 34.638 5.885 3.450 2.27%
DeepCrowd-lateExternal 36.192 6.016 3.542 2.38%
DeepCrowd-noExternal 41.527 6.444 3.792 2.55%

DeepCrowd (Ours) 33.138 5.757 3.394 2.25%

Fig. 8. Effect of Network Depth.

Fig. 9. Effect of observation step.
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Similar with the above case studies, we select the crowd den-
sity of Tokyo area at 2017-07-03 09:00:00 as the prediction tar-
get. Since the time interval is 30 minutes and observation step
is 6, XHour: 2017-07-03 06:00:00�2017-07-03 08:30:00, XDay:
2017-07-02 06:00:00�2017-07-02 08:30:00, XWeek: 2017-06-26
06:00:00�2017-06-26 08:30:00 visualized in the upper part of
Fig. 13 are taken as input features. By using these input fea-
tures and the trained weights of DeepCrowd, we plot gradi-
ent-based activation feature maps from the last two layers of
PyramidConvLSTMs as Fig. 12. Left is the T th hidden state pT
of the last UpSampling layer, and right is the T th hidden state
qT of the last ConvLSTM layer, which are respectively corre-
sponding to the following in Eq. (5):

½p1; p2; . . . ; pT � ¼ fUpSamplingð½sð1Þ1 ; s
ð1Þ
2 ; . . . ; s

ð1Þ
T �Þ

½q1; q2; . . . ; qT � ¼ fConvLSTM$ð½x1; x2; . . . ; xT �Þ:

From Fig. 12, we can find that the activation features of the
final UpSampling layer are scattered in a wide range, and the
final ConvLSTM layer captures the features in a relatively
small range. In other words, both local and global features
could be well preserved through the PyramidConvLSTMs
architecture. Then, using the same prediction target and the
input features, we examine the attention scores achieved by
the two levels of attention blocks. Through Fig. 13, we find
that the overall attention scores are XHour:XDay:XWeek =
0.76:0.12:0.12, and the final step (i.e., 6th step) plays a vital role
in each X, weighing around 60 percent among the total six
observation steps. This demonstrates that our Attention-
ConvLSTMs architecture can accurately pick up the temporal
features frommultiple time periods.

6 RELATED WORK

In this section, we briefly discuss some existing researches
concerning to crowd or traffic prediction problem in the
field of urban computing [23]. Except for the deep learning
approaches, there are also some statistical models proposed.
Spatiality preservable factored Poisson regression [24] incor-
porates point of interest to overcome data sparsity and

Fig. 10. Case study: Ground-truth and predicted crowd density at tokyo
station and tokyo disneyland for one week.

Fig. 11. Case study: Ground-truth and predicted crowd density for the
tokyo area on a weekday morning.

Fig. 12. Case study: Activation feature maps from the last two layers of
PyramidConvLSTMs. Left is the last Upsampling layer, and right is the
last ConvLSTM layer.

Fig. 13. Case study: Attention weights from the two levels of Attention-
ConvLSTMs. Upper is the input features XHour, XDay, XWeek, each with
six observation steps, and bottom is the attention weights from the two
levels of attention blocks.
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degraded performance in even finer grains population
prediction. CityProphet [25], [26] and [27] utilize query
data of Smartphone App to forecast only crowd density
other than crowd flow. [28], [29] conduct transition
estimation from aggregated population data, and [30]
estimates the transition populations using inflow and
outflow defined by [9]. Based on road network, [31],
[32], [33], [34], [35], [36], [37] were proposed to predict
the traffic flow, speed, congestion, human mobility as
well as transportation mode. In particular, DeepTTE [38]
and DeepGTT [39] are proven as effective deep learning
models to predict the travel time on each road segment.
Leveraging on the latest techniques, a series of models
have been proposed to address traffic-related problems,
such as using graph neural networks for traffic forecast-
ing [40] and ride-hailing demand prediction [41], multi-
task learning for travel time estimation [42], or meta
learning for traffic prediction [43].

Besides, many trajectory-based deep learning models were
proposed to predict each individual’s movement [44], [45],
[46]. [45] extends a regular RNN by utilizing time and distance
specific transition matrices to propose an ST-RNN model for
predicting the next location. DeepMove [18], considered to be
a state-of-the-art model for trajectory prediction, designed a
historical attention module to capture periodicities and
augment prediction accuracy. VANext [46] further enhanced
DeepMove by proposing a novel variational attention mecha-
nism. Modeling human mobility for very large populations
[47], [48] and simulating human emergencymobility following
disasters [49], [50] are similar problems to ours; however, their
models are built based on millions of individuals’ mobility.
[51] propose tensor factorization approach to decompose
urban human mobility, aiming to understand basic urban life
patterns from city-scale human mobility data. Using mobility
data from location-based social networks (LBSN), [52], [53]
design matrix factorization-based models to conduct POI rec-
ommendation or location prediction. Also, [54] utilized latent
factor models for POI recommendation using heterogeneous
features. [55] conducted chain store site recommendation with
transfer learning andmulti-source data.

Last, other urban computing problems are also modeled
based on citywide mesh-grids, and addressed through
advanced deep learning technologies, including air quality
prediction [56], [57], crop yield prediction [58], abnormal event
prediction [59], and multiple transportation demand predic-
tion [60].

7 CONCLUSION

In this study, we revisit grid-based urban computing on
citywide traffic and crowd prediction by publishing new
datasets called BousaiTYO and BousaiOSA. The scale of our
new dataset is much larger than the previous datasets on
the following aspects: (1) larger spatial area; (2) finer mesh
size; (3) higher user sample. Most importantly, our dataset
can better reflect the real-world citywide crowd as it is gen-
erated based on a real-world smartphone app with large
active users rather than taxi or bike O-D data. To effectively
capture spatial and temporal dependency from this large-
scale crowd data, we propose a novel deep learning model
called DeepCrowd by designing pyramid architectures and

high-dimensional attention mechanism based on Convolu-
tional LSTM. We implement the state-of-the-art works of lit-
erature including ST-ResNet, DMVST-Net, PCRN, STDN,
DeepSTN+, and Multitask-DF as baselines, and conduct a
thorough performance evaluation on crowd density and
in-out flow prediction problems. The experimental results
demonstrate the superior performances of DeepCrowd to
the state-of-the-arts on new datasets. Our new dataset and
model will be officially published if this paper is accepted.
In the future, the effects of different settings on the use of
heterogeneous data sources such as POI and event info,
objective function, and scaling strategy could be further
analyzed. Moreover, we consider to apply our framework
to other urban computing problems, such as citywide air
quality prediction, citywide electric power consumption,
citywide transportation demand prediction, and citywide
crime incident prediction. The data and code can be found
at https://github.com/deepkashiwa20/DeepCrowd.
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