
DeepUrbanEvent: A System for Predicting Citywide Crowd
Dynamics at Big Events

Renhe Jiang
Xuan Song

The University of Tokyo
National Institute of Advanced

Industrial Science and Technology
[jiangrh,songxuan]@csis.u-tokyo.ac.jp

Dou Huang
Xiaoya Song∗

The University of Tokyo
[huangd,song.xy]@csis.u-tokyo.ac.jp

Tianqi Xia†
Zekun Cai

The University of Tokyo
[xiatianqi,caizekun]@csis.u-tokyo.ac.jp

Zhaonan Wang
National Institute of Advanced

Industrial Science and Technology
zn.wang@aist.go.jp

Kyoung-Sook Kim
National Institute of Advanced

Industrial Science and Technology
ks.kim@aist.go.jp

Ryosuke Shibasaki
The University of Tokyo
shiba@csis.u-tokyo.ac.jp

ABSTRACT
Event crowdmanagement has been a significant research topic with
high social impact. When some big events happen such as an earth-
quake, typhoon, and national festival, crowd management becomes
the first priority for governments (e.g. police) and public service
operators (e.g. subway/bus operator) to protect people’s safety or
maintain the operation of public infrastructures. However, under
such event situations, human behavior will become very different
from daily routines, which makes prediction of crowd dynamics at
big events become highly challenging, especially at a citywide level.
Therefore in this study, we aim to extract the “deep” trend only
from the current momentary observations and generate an accurate
prediction for the trend in the short future, which is considered to
be an effective way to deal with the event situations. Motivated by
these, we build an online system called DeepUrbanEvent which can
iteratively take citywide crowd dynamics from the current one hour
as input and report the prediction results for the next one hour as
output. A novel deep learning architecture built with recurrent neu-
ral networks is designed to effectively model these highly-complex
sequential data in an analogous manner to video prediction tasks.
Experimental results demonstrate the superior performance of our
proposed methodology to the existing approaches. Lastly, we apply
our prototype system to multiple big real-world events and show
that it is highly deployable as an online crowd management system.

CCS CONCEPTS
• Information systems→ Information systems applications;
•Human-centered computing→Ubiquitous andmobile com-
puting; •Computingmethodologies→Artificial intelligence.

∗Also with Harbin Institute of Technology.
†Also with National Institute of Advanced Industrial Science and Technology.

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330654

KEYWORDS
crowd management; ubiquitous and mobile computing; deep learn-
ing; application and system

ACM Reference Format:
Renhe Jiang, Xuan Song, Dou Huang, Xiaoya Song, Tianqi Xia, Zekun Cai,
Zhaonan Wang, Kyoung-Sook Kim, and Ryosuke Shibasaki. 2019. Deep-
UrbanEvent: A System for Predicting Citywide Crowd Dynamics at Big
Events. In The 25th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD ’19), August 4–8, 2019, Anchorage, AK, USA. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3292500.3330654

1 INTRODUCTION
Event crowd management has been a significant research topic
with highly social impact. When some big events happen such as
an earthquake, typhoon, and national festival, crowd management
becomes the first priority for governments (e.g. police) and public
service operators (e.g. subway/bus operator) to protect people’s
safety or maintain the operation of public infrastructures. Especially
for a large urban area such as Tokyo and Shanghai, the population
density is very high, which naturally leads to high risk for various
accidents and emergency situations. Recall the tragedy on New
Year’s Eve in Shanghai, around 300,000 people gathered to celebrate
the arrival of 2015 near Chen Yi Square on the Bund. However,
the large crowd was not well controlled, and a stampede occurred
where 36 people died and 47 were injured in the tragedy. Meanwhile,
AI technology is rapidly developing and the 5G mobile Internet
technology is forthcoming. Big human mobility data are being
continuously generated through a variety of sources, some of which
can be treated and utilized as streaming data for understanding
and predicting crowd dynamics. All these stimulate us to take new
efforts and achieve new success on this social issue by using such
streaming mobility data and advanced AI technologies. However,
when big events or disasters happen, urban human mobility may
dramatically change from normal situations. It means people’s
movements will almost be uncorrelated with their daily routines.
As shown in Fig.2, the big earthquake occurred at 14:46 JST 11th
March 2011. Citywide human mobility in Tokyo area was greatly
impacted since the transportation network was suddenly shut down

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2114

https://doi.org/10.1145/3292500.3330654
https://doi.org/10.1145/3292500.3330654
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3292500.3330654&domain=pdf&date_stamp=2019-07-25

Figure 1: DeepUrbanEvent is designed as an effective real-
world system for predicting citywide crowd dynamics at big
events. Crowd dynamics graph formanagement can be built
based on the predicted density (nodes) and flow (edges).

by the earthquake. Due to this big event, an abnormal pattern of
crowd density can be observed in both Tokyo station area and
Shinjuku station area. All these demonstrate that predicting crowd
dynamics under event situations is of high social impact, but very
challenging, especially at a citywide level.

To address this challenge, we aim to extract the “deep” trend only
from the current momentary observations and generate an accurate
prediction for the trend in the short future, which is considered to
be an effective way to handle the event situations[7]. We build an
intelligent system called DeepUrbanEvent based on collected big
human mobility data and a unique deep-learning architecture. It is
designed to be deployed as an online system for crowdmanagement
at big events, which can continuously take limited steps of currently
observed crowd dynamics as input and report multiple steps of
prediction results for a short time period in the future as output.
With such multiple steps of prediction, it can help us understand
how the crowd dynamics are evolving with more details.

Figure 2: Citywide human mobility in Tokyo before and af-
ter the Great East Japan Earthquake (top). Crowd density in
Tokyo station area and Shinjuku station area (bottom).

Specifically, in this study, citywide crowd dynamics are first de-
composed into two parts: crowd density and crowd flow. By mesh-
ing a large urban area into fine-grained grids, they can both be rep-
resented by a four-dimensional tensor (Timestep, Heiдht ,Width,
Channel) analogously to a short video, where Timestep represents
the number of observation/prediction steps, and Heiдht ,Width
is determined by mesh size. Crowd density/flow video represents
a time series of density/flow value for each mesh-grid, therefore
Channel for density is equal to 1, whereasChannel for flow is equal
to the size of flow kernel window η × η. The stored value indicates
how many people inside a central mesh-grid will transit to each of
η × η neighboring mesh-grids in a given time interval. A Multitask
ConvLSTM Encoder-Decoder architecture is designed to simultane-
ously model these two kinds of high-dimensional sequential data
to gain concurrent enhancement. Based on this architecture, our
system works as an online system that can continuously take lim-
ited steps of currently observed crowd density and crowd flow as
input, and report multiple steps of predictions results as output
for the future time period. Finally, we validate our system on four
big real-world events that happened in Tokyo area, namely 3.11
Japan Earthquake, Typhoon Roke(2011), New Year’s Day(2012), and
Tokyo Marathon(2011), and demonstrate the superior performance
to baseline models. The overview of our system has been shown in
Fig.1. In summary, our work has the following key characteristics
that make it unique:

• For predicting crowd dynamics at citywide-level big events,
we build an online deployable system that need only limited
steps of current observations as input.

• Citywide crowd dynamics are decomposed into two kinds
of artificial videos, namely crowd density video and crowd
flow video, and a Multitask ConvLSTM Encoder-Decoder is

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2115

designed to simultaneously predict multiple steps of crowd
density and flow for the future time period.

• We validate our system on four big real-world events with
big human mobility data source and verify it as a highly
deployable prototype system.

2 RELATEDWORK
Forecasting the citywide crowd flow [12, 37, 38] are related works,
which build a time-series prediction model based on inflow and
outflow, which can only indicate how many people will flow into
or out from a certain mesh-grid, and can’t answer where the people
flow come or transit. Their models also can’t give out the crowd
density prediction in a straight-forward way, which is very crucial
for event crowd management.

CityProphet[14] and [40] utilize query data of Smartphone APP
to forecast only crowd density other than crowd flow. [2, 27] con-
duct transition estimation from aggregated population data, and
[29] estimates the transition populations using inflow and outflow
defined by [12]. Some researchers tried to detect the urban anom-
alies from mobility data based on statistical methodologies [10, 36].
Modeling human mobility for very large populations [7, 25], pre-
dicting human mobility from the sparse and lengthy trajectories[9],
and simulating human emergency mobility following disasters [26]
are similar problems to ours, however, their models are built based
on millions of individuals’ mobility.

Many recent studies have analyzed human mobility data. For
example, [6, 17, 18, 39] utilized the tensor factorization approach to
decompose urban human mobility, which aimed to understand the
basic life patterns of people or recommend location-based services.
[23] conducted next place prediction in location-based services
based on user features. Using population-scale data, [32] detected
popular temporal modes and [8] modeled urban population of mul-
tiple cellphone networks. Moreover, some studies also applied deep
learning to predict the traffic flow, traffic speed, congestion, taxi
demand, and traffic accident[4, 13, 19–21, 33–35].

3 DATA SOURCE
“Konzatsu-Tokei (R)” from ZENRIN DataCom Co., Ltd. was used. It
refers to people flow data collected by individual location data sent
frommobile phones with an enabled AUTO-GPS function under the
users’ consent, through the “docomo map navi" service provided
by NTT DoCoMo, Inc. Those data are processed collectively and
statistically in order to conceal private information. The original
location data is GPS data (latitude, longitude) sent at a minimum
period of about 5 min, and does not include information (such as
gender or age) to specify individuals. In this study, the proposed
methodology is applied to raw GPS data from NTT DoCoMo, Inc.
The raw GPS log dataset was collected anonymously from approxi-
mately 1.6 million mobile phone users in Japan over a three-year
period (August 1, 2010, to July 31, 2013). Each record contains user
ID, latitude, longitude, altitude, timestamp and accuracy level.

4 CITYWIDE CROWD DYNAMICS MODELING
Definition 1 (Calibrated human trajectory database): Human trajec-
tory is stored and indexed by day (i) and userid (u) in the trajectory
database Γ. Given a meshM of an area, namely a set of mesh-grids

Figure 3: Citywide Crowd Dynamics Prediction.

{д1,д2,...,дm ,...,дHeiдht∗W idth }, and a time interval ∆t , each user’s
trajectory on each day Γiu is mapped onto mesh-grids and then
calibrated to obtain constant sampling rate as follows:

Γiu = (t1,д1), ..., (tk ,дk) ∧ ∀j ∈ [1,k) , |tj+1 − tj | = ∆t,

which means that the time interval between any two consecutive
timeslots is calibrated into ∆t . For simplicity, from now on we only
consider one-day slice of the trajectory database Γ, then the day
index (i) can be omitted when refer to Γ.

Definition 2 (Crowd density): Given Γ,M , crowd density at times-
lot t on mesh-grid дm is defined as follows:

dtm = |{u |Γu .дt = дm }|,

which intuitively indicates how many people inside дm at t .
Definition 3 (Crowd flow): To capture the crowd flow starting

from a certain mesh-grid, we utilized a kernel window denoted as
η × η w.r.t дm , which represents a square area made up of η × η
neighboring mesh-grids with дm as the centroid mesh-grid. Given
Γ,M , and a kernel window η×η w.r.t each д, crowd flow at timeslot
t on mesh-grid дm is defined as follows:

ftmw = |{u |Γu .дt−1 = дm ∧ Γu .дt = дw }|,

which intuitively indicates howmany people transit frommesh-grid
дm at timeslot t-1 to a neighboring mesh-grid дw inside a kernel
window at timeslot t . After calculating the crowd density/flow for
each mesh-grid over the entire mesh, citywide crowd density/flow
can be obtained for each timeslot.

Definition 4 (Crowd density/flow video): As the mesh is rep-
resented in a 2-dimensional format, a crowd density/flow video
containing a couple of consecutive frames can be represented by
a 4-dimensional tensor RT imestep×Heiдht×W idth×Channel , where
Timestep represents the number of video frames, Channel for den-
sity is equal to 1, and Channel for flow is equal to the size of the
given kernel window namely η2. An illustration for crowd den-
sity/flow video has been shown in Fig.1.

Definition 5 (Crowd density/flow video prediction): Given cur-
rently observeda-step crowd density/flow videoxd=dt−(α−1), ...,dt ,
xf =ft−(α−1), ..., ft at timeslot t , prediction for the next β-step den-
sity/flow video ŷd=d̂t+1, ..., d̂t+β , ŷf = f̂t+1, ..., f̂t+β is modeled as

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2116

follows:
ŷd = d̂t+1, d̂t+2, ..., d̂t+β =

argmax
dt+1,dt+2, ...,dt+β

P(dt+1,dt+2, ...,dt+β | dt−(α−1), ...,dt),

ŷf = f̂t+1, f̂t+2, ..., f̂t+β =

argmax
ft+1,ft+2, ...,ft+β

P(ft+1, ft+2, ..., ft+β | ft−(α−1), ..., ft).

Definition 6 (Citywide crowd dynamics prediction): Given cur-
rently observed a-step crowd density/flow video, citywide crowd
dynamics prediction aims to simultaneously generate next β-step
density/flow video, which is modeled as follows:

ŷd , ŷf = argmax
yd ,yf

P(yd ,yf | xd , xf).

Moreover, by jointly modeling these two highly correlated tasks,
concurrent enhancement for both can be expected. It should be
noted that crowd density video and crowd flow video are summa-
rized and proposed as a new concept called crowd dynamics here,
which aims to not only reflect the crowd density for each mesh-
grid but also depict how a crowd of people move/transit among
the mesh-grids. Fig.3 demonstrates the overall problem definition
mentioned above.

5 DEEP SEQUENTIAL LEARNING
ARCHITECTURE

As shown above, citywide crowd dynamics problem has been de-
fined in an analogous manner to a video prediction task. However,
citywide crowd dynamics are highly complex phenomenon espe-
cially when big events happen, which makes it very difficult for
handling these high-dimensional sequential data with some classi-
cal methodologies. This naturally motivates us to employ the most
advanced deep video learning model as the basic component of our
system.
Convolutional LSTM. ConvLSTM[31] has been proposed to build
an end-to-end trainable model for the precipitation nowcasting
problem. It extends the fully connected LSTM (FC-LSTM) to have
convolutional structures in both the input-to-state and state-to-
state transitions and achieves new success on video modeling tasks.
Thus, ConvLSTM is utilized as the core component of our system
for the density and flow video prediction task. As shown in Fig.1, a
ConvLSTM has three gates comprising an input gate i , an output
gate o, and a forget gate f as same as an ordinary LSTM. Hidden
state ht in a ConvLSTM is calculated iteratively from t=1 to T for
an input sequence of frames (x1, x2, ..., xT) as follows:

it = σ (Wxi ∗ xt +Whi ∗ ht−1 +Wci ⊙ ct−1 + bi)

ft = σ (Wxf ∗ xt +Whf ∗ ht−1 +Wcf ⊙ ct−1 + bf)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wxc ∗ xt +Whc ∗ ht−1 + bc)

ot = σ (Wxo ∗ xt +Who ∗ ht−1 +Wco ⊙ ct + bo)

ht = ot ⊙ tanh(ct),

whereW is weight,b bias vector, * denotes the convolution operator
and ⊙ represents Hadamard product. All of these weight param-
eters are determined by applying the standard “backpropagation
through time” (BPTT) algorithm, which starts by unfolding the
recurrent neural networks through time and it then generalizes

the backpropagation for feed-forward networks to minimize the
defined loss function, which will be Mean Squared Error (MSE) for
our problem. The full details of the algorithm are omitted here.

Figure 4: Stacked ConvLSTM for One-Step Prediction.

5.1 Stacked ConvLSTM Architecture
As a comparative modeling approach, we would like to verify how
the performance of our systemwould be like if we use a one-step-by-
one-step prediction model and obtain multiple steps of predictions
by iterating in an autoregressive manner. Then one-step-by-one-
step crowd density prediction model can be defined as follows:

d̂α+1, d̂α+2, ..., d̂α+β =

β∏
i=1

argmax
dα+i

P(dα+i | di ,di+1, ...,di+α−1).

The definition given above can be regarded as a typical application
of the n-gram language model except that each item d is a 3D tensor.
Crowd flow prediction could also be modeled in a similar formula,
which will be omitted in this paper for simplicity.

Moreover, the use of multiple stacked layers of neural networks
can also be considered to boost the performance in difficult time-
series modeling tasks according to [11]. Thus, a deep architec-
ture constructed with multiple stacked ConvLSTM layers has been
shown in Fig.4 for one-step prediction. It has strong representa-
tional power which makes it suitable for giving predictions in com-
plex phenomenons like the citywide crowd dynamics. Note that the
same network architecture can also be applied to one-step crowd
flow prediction, but a special AutoEncoder component is first nec-
essary due to the uniqueness of crowd flow video which will be
explained in the following.

5.2 CNN AutoEncoder for Crowd Flow
Crowd density and flow video are both represented as 4D tensor
RT imestep×Heiдht×W idth×Channel , however, theChannel for flow
is much larger than density. In our system, each grid-cell is set to
500m×500m, by taking into account all the possible transportation
modes such asWALK, BUS, CAR and TRAIN, the transition distance
from one grid-cell to another neighboring one can be up to 4km
within 5 minutes time interval (approximately 48km/h at most).

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2117

Figure 5: CNN AutoEncoder for Crowd Flow.

Thus kernel window needs to be 15×15 to capture all the possible
crowd flow within 5 minutes.Channel for flow is then equal to 225,
which is just too large for most of the state-of-the-art video learning
models to handle. Thus, we build a special CNNAutoEncoder [3, 30]
to obtain a low-dimension representation of Channel for crowd
flow.

Compared with traditional neural networks, CNNs were de-
signed specifically for analyzing visual imagery [16], where the
neurons in a layer are only connected to a small region of the previ-
ous layer instead of all of the neurons in a fully-connected manner.
CNNs are the state-of-the-art method for image recognition or clas-
sification tasks [15, 24]. For a typical CNN layer, the convolutional
feature value at location (i, j) in the k-th feature map, feature ci , j ,k ,
is calculated as:

ci , j ,k = ReLU (wkxi , j + bk),

wherewk and bk are the weight and bias of the k-th filter, respec-
tively, and xi , j is the input patch centered at location (i, j). ReLU is
often used as the activation function.

The details of the special CNN AutoEncoder has been proposed
in Fig.5. An original crowd flow image is represented with a 3D
tensor (15, 15, 225), an encoder is constructed with 3 convolutional
layers to encode the image into a small 3D tensor (15, 15, 4), and then
an decoder is constructed with 3 convolutional layers to decode
the compressed tensor back to the original 3D tensor (15, 15, 225).
The end-to-end model parameters can be optimized by minimizing
reconstruction error (MSE) between the original flow image and
decoded flow image. In our system, we aim to obtain a compressed
Channel (from 225 to 4) but keep the spatial structural information
of the flow image at (15, 15). Thus, only convolutional layer with
1×1 kernel window is utilized. At the last layer of the encoder, a
unique ReLU(MAX=1.0) function was utilized to ensure that the
values are all scaled into [0,1], which can help the value range of
crowd flow approximately same to the value range of crow density.
Without this, the multitask learning mechanism introduced in the
following couldn’t function well.

5.3 Multitask ConvLSTM Encoder and Decoder
With such a CNN AutoEncoder, citywide crowd flow can be mod-
eled and computed with the same architecture for crowd density
shown in Fig.4. The prediction can be performed in an iterative one-
by-one manner, but one major limitation of this model is to predict
a relatively long short-term crowd dynamics. With the iteration
going on, the accumulated iteration error will become large, which
can result in terrible performance on the last several predicted steps.
To tackle this problem, we improve the one-step-by-one-step mod-
eling with multi-step-to-multi-step modeling (Definition 5) aimed
at achieving better performance on “long” short-term predictions.
To deliver this idea, a sequential encoder and decoder architecture
[28, 31] has been built with four ConvLSTM layers in this study.
It works in the following steps: (1) the first two hidden layers of
ConvLSTM (encoder) map the α steps of the inputted crowd density
or flow video into a single latent vector, which contains information
about the entire video sequence; (2) this latent vector is repeated β
times to a constant sequence; and (3) the other two hidden layers
of ConvLSTM (decoder) are used to turn this constant sequence
into the β steps of the output video sequence. Batch normalization
layer is added between two consecutive ConvLSTM layers. ReLU
is used as the activation function in the final decoding layer. The
ConvLSTM Enc.-Dec. model for crowd density and flow can be
separately trained by minimizing the prediction error L(θd) and
L(θf), described as follows:

L(θd) = | |ŶD − YD | |2, L(θf) = | |ŶF − YF | |
2

Crowd density video and crowd flow video share important
information and are highly correlated with each other. The insights
behind this are two folds: (1) People flow tend to follow the trend,
especially under the event/emergency situations, which may make
crowded places attract more and more people; (2) Higher inflow
will lead to higher density for each grid-cell, and similarly higher
outflow will reduce the crowd density. Moreover, as mentioned
above, an online crowd management system needs to predict not
only the crowd density but also the crowd flow for each grid-cell.
Thus, we jointly model these two highly correlated tasks defined
as Definition 6, and propose a Multitask ConvLSTM Encoder and
Decoder architecture as shown in Fig.6. The key concept of multi-
task learning [22] is to learn multiple tasks simultaneously with
the aim of gaining mutual benefits; thus, learning performance
can be improved through parallel learning while using a shared
latent representation. Therefore, it is reasonable to expect better
performances from this learning framework for our system. Our
Multitask ConvLSTM Encoder and Decoder architecture first takes
XD and XF as two separate inputs. The separate input encoders
first encode the crowd density and crowd flow video respectively.
Then, the shared encoder maps the encoded crowd density and
flow into a joint latent representation zα , which can be taken as the
auto-extracted features for the entire crowd dynamics; zα is then
repeated β times to be passed to the shared decoder, and finally the
output decoders give the multiple steps of prediction results for
crowd density video ŶD and flow video ŶF respectively. The entire
model can be trained by minimizing the total prediction error L(θ)
of crowd density and flow, described as follows:

L(θ) = λd | |ŶD − YD | |2 + λf | |ŶF − YF | |
2.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2118

Figure 6: Multitask ConvLSTM Enocder-Decoder for Simultaneous Multi-Step Prediction of Crowd Density and Crowd Flow.

where λd and λf are set equally to 0.5 in our final system. CNN
AutoEncoder still needs to be applied first to original crowd flow.

6 EXPERIMENT
6.1 Settings
Experimental Setup:We selected theGreater TokyoArea (Lonд. ∈
[139.50, 139.90], Lat . ∈ [35.50, 35.82]) as our target urban area. Four
citywide-level events happened in this area were selected as the
testing events as follows. (1) 3.11 Earthquake (2011/03/11), a mag-
nitude 9.0-9.1 earthquake off the coast of Japan that occurred at
14:46 JST, which caused a great impact on people’s behaviors in
the Great Tokyo Area. (2) Typhoon Roke (2011/09/21), recorded as
one of the strongest typhoon in Japan’s history, which made sub-
way operators shut down part of their services. (3) New Year’s Day
(2012/01/01). There are a number of New Year celebrations in Tokyo
area, especially, for “Hatsumode” (the first visit in Buddhist temple
or shrine), most of the railway lines operate overnight on the New
Year’s Eve for this. (4) Tokyo Marathon(2011/02/27). The number of
people attending this event was 2.16 million (the number of people
along the road was 1.53 million, and the number of visitors to the
Tokyo Marathon Festival was 0.63 million). Also traffic regulation
was strictly conducted along the Marathon route. These four event
days were used as testing dates, and 10 consecutive days before the
event day were utilized as training and validation dataset, which
means 2011/03/01-2011/03/10, 2011/09/11-2011/09/20, 2011/12/22-
2011/12/31, and 2011/02/17-2011/02/26 were the selected periods
for the four events respectively. Our data source contained approx-
imately 100,000∼130,000 users’ GPS logs on each day within the
target urban area. After conducting data cleaning and noise reduc-
tion to the raw dataset, we did linear interpolation to make sure
each user’s 24-hour (00:00∼23:59) GPS log has a constant 5-minute
sampling rate. Then by mapping each coordinate onto mesh-grid,
crowd density video and crowd flow video can be generated based
the definitions listed in Section 4.
Parameter Settings:Wemeshed the entire areawith∆Lonд.=0.005,
∆Lat .=0.004 (approximately 500m×500m), which resulted an 80×80
mesh-grid map. As mentioned above, the time interval ∆t of our
system was set to 5 minutes. Therefore, we got 2880 timeslots (288
* 10 days) as training dataset and 288 timeslots as testing dataset,
and crowd density frame and crowd flow frame were generated
for each timeslot. Kernel window was set to 15×15 for crowd flow,

which could capture enough transit distance of crowd flow within
5 minutes. We set the observation step α and the prediction step β
both to 6 to generate length-6 crowd/flow video as inputs and their
corresponding next length-6 videos as outputs. This means our
system could predict the crowd dynamics for the next 30 minutes.
In each report, it contained a 6 steps of prediction results for each
5 minutes, and the result at 6th step gave us the maximum lead
time 30 minutes. Similarly, an evaluation for the prediction with 60
minutes lead time is also conducted by setting α and β to 12. Finally
we could get 2,868 sample pairs from training dataset, and randomly
selected 80% of them (2,294) as the training samples and 20% of them
(574) as the validation samples. The Adam algorithm was employed
to control the overall training process, where the batch size was
set to 4 and the learning rate to 0.0001 for all deep learning models
except that the learning rate of CNN AutoEncoder was tuned as
0.001. The training algorithm would be stopped after 200 epochs
and only the best model would be saved. In addition, we used 500
as the scaling factor for crowd density to scale the data down to
relatively small values, and 100 as the scaling factor for crowd flow
value. In the evaluation, we rescaled the predicted value back to
the normal values, and compared them with the ground-truth. The
parameter settings were kept the same for each event. Python and
some Python libraries such as Keras[5] and TensorFlow[1] were
used in this study. The experiments were performed on a GPU
server with four GeForce GTX 1080Ti graphics cards.
Baseline models: We implemented the following models as base-
line models for comparison. (1) HistoricalAverage. Crowd den-
sity/flow for each timeslot were estimated by averaging last 10
days’ corresponding values. (2) CopyYesterday. We directly used
yesterday’s value as the predicted value on event days. (3) Copy-
LastFrame. We directly copied the last/latest observation as the
predicted value, which can be a simple but very effective method
for event situation. (4) ARIMA. It is a classical time-series predic-
tion model designed for one dimensional data. For each mesh-grid,
we build one ARIMA model to predict the time-series density pre-
diction. However, for flow tensor (80,80,225) at each timeslot, the
dimensionwas just too high for ARIMA to handle. (5) VectorAutoRe-
gressive. It is an advance time-series prediction model designed
for high dimensional data. By flattening density tensor (80,80,1)
at each timeslot into 6400-dimension vector, the model could han-
dle the crowd density prediction task. For flow tensor (80,80,225),
the dimension was also just too high for VAR to deal with. (6)

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2119

Table 1: Performance Evaluation of 30 Minutes Ahead Prediction on Four Events

Model 3.11 Earthquake Typhoon Roke New Year’s Day Tokyo Marathon
Density Flow Density Flow Density Flow Density Flow

HistoricalAverage 106.032 0.726 75.402 0.519 176.013 1.099 33.381 0.223
CopyYesterday 129.436 0.912 85.641 0.592 110.444 0.660 65.765 0.437
CopyLastFrame 7.824 0.116 9.756 0.186 5.498 0.079 6.496 0.107

ARIMA 10.430 NA 13.376 NA 8.343 NA 7.808 NA
VectorAutoRegressive 10.843 NA 13.377 NA 9.511 NA 9.380 NA
CityMomentum [7] 27.670 0.653 29.305 0.962 23.058 0.235 25.774 0.475
ST-ResNet [37] 6.542 0.113 7.802 0.183 4.544 0.080 5.548 0.103

CNN 8.698 0.178 10.245 0.196 6.178 0.083 6.614 0.100
CNN Enc.-Dec. 7.115 0.117 8.571 0.187 5.216 0.079 6.004 0.095

MultiTask CNN Enc.-Dec. 6.802 0.119 8.226 0.197 5.158 0.084 5.953 0.097
ConvLSTM 6.737 0.124 7.959 0.195 4.679 0.077 5.675 0.094

ConvLSTM Enc.-Dec. 6.281 0.102 7.508 0.171 4.500 0.074 5.372 0.089
MultiTask ConvLSTM Enc.-Dec. 5.549 0.102 6.753 0.170 4.117 0.074 5.012 0.086

Table 2: Performance Evaluation of 60 Minutes Ahead Prediction on Four Events

Model 3.11 Earthquake Typhoon Roke New Year’s Day Tokyo Marathon
Density Flow Density Flow Density Flow Density Flow

HistoricalAverage 104.604 0.731 75.927 0.529 175.344 1.102 33.422 0.225
CopyYesterday 128.133 0.920 86.069 0.601 106.991 0.645 65.725 0.440
CopyLastFrame 13.020 0.168 16.607 0.252 8.650 0.096 10.004 0.128

ARIMA 24.296 NA 32.933 NA 15.411 NA 15.259 NA
VectorAutoRegressive 22.355 NA 29.872 NA 21.072 NA 17.261 NA
CityMomentum [7] 32.034 0.570 35.090 0.821 25.867 0.207 28.825 0.400
ST-ResNet [37] 11.899 0.157 13.418 0.238 7.633 0.103 8.501 0.124

CNN 12.247 0.189 17.670 0.360 10.469 0.119 12.114 0.223
CNN Enc.-Dec. 11.372 0.164 13.876 0.245 8.311 0.097 9.127 0.119

MultiTask CNN Enc.-Dec. 10.812 0.177 13.800 0.247 8.153 0.101 9.004 0.124
ConvLSTM 11.355 0.139 12.285 0.228 7.615 0.118 9.511 0.140

ConvLSTM Enc.-Dec. 9.309 0.122 11.186 0.197 6.885 0.086 7.843 0.103
MultiTask ConvLSTM Enc.-Dec. 8.094 0.122 9.900 0.196 6.496 0.085 7.483 0.101

CityMomentum[7]. It was firstly proposed for momentary mobil-
ity prediction at the citywide level for big events. Although the
model was build from a perspective of individual’s mobility, the
predicted/simulated trajectory of each individual could be used
for generating aggregated crowd density and flow, which makes it
comparable with our system. (7) ST-ResNet[37]. This deep residual
learning-based method shows a state-of-the-art performance on
citywide crowd flow prediction. To compare its performance under
the same problem definition with us, we adapt ST-ResNet to take
in limited steps of latest observations on crowd density/flow right
and perform one-step-by-one-step autoregression to obtain multi-
ple steps of predictions. Here, we also found that 1-residual-unit
ST-ResNet without external features could achieve the best perfor-
mances on our event situations. (8) CNN. It is a one-step predictor
constructed with four Conv layers. Note that the 4D tensor would
be converted to 3D tensor (Heiдht,Width,Timestep ∗Channel) by
concatenating the channels at each timestep just as the way [37]
did, so that CNN could take our 4D tensors as inputs. The first three
Conv layers used 32 filters of 3×3 kernel window, and the final
Conv layer used a ReLU activation function to output single step

of video frame. (9) CNN Enc.-Dec.. It is a multi-step predictor also
constructed with four Conv layers. It shares the same parameter set-
tings with (5). The only difference is the final Conv layer outputs a
3D tensor (Heiдht,Width,Timestep ∗Channel) as multiple steps of
predictions. (10) Multitask CNN Enc.-Dec. It has 4 Conv layers shar-
ing a similar multitask architecture as illustrated in Fig.6, namely
separate input encoding Conv layer, shared encoding and decoding
layer, and separate output Conv layer. All the parameters were
kept same with (6). (11) ConvLSTM (one-step-by-one-step) and (12)
ConvLSTM Enc.-Dec (multi-step-to-multi-step) are the proposed
comparison models constructed with four ConvLSTM layers in Sec-
tion 5. Each ConvLSTM layer uses a 32 filters of 3×3 kernel window
and the ReLU activation is used in the final layer. BatchNormaliza-
tion was added between two consecutive CNN/ConvLSTM layers
for all the models. Note that for all of the crowd flow parts, as shown
in Fig. 5, CNN AutoEncoder will be first applied to encode the orig-
inal flow tensor and then decode the (predicted) encoded flow back
to the original format. Our final system is implemented usingMul-
tiTask ConvLSTM Enc.-Dec.. The source codes for these models
have been released at github.com/deepkashiwa/DeepUrbanEvent.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2120

Figure 7: Visualization of the ground-truth crowd density, the prediction result of Historical Average (seen as the normal
situation), and the prediction result of our model (MultiTask ConvLSTM Enc.-Dec.) at four events (60 minutes ahead).

6.2 Performance Evaluation
Evaluation metric:We evaluated the performances of the models
with Mean Squared Error (MSE) as follows:

MSE =
1
n

n∑
i

| |Ŷi − Yi | |
2

where n is the number of samples, Y and Ŷ are the ground-truth
value and predicted value in 4D tensor format, namely, (Timestep,
Heiдht ,Width, Channel). Density tensor and flow tensor differ at
the Channel .
Overall performance:We compared the performance of the base-
line models and our proposed modelMultitask ConvLSTM Enc.-
Dec. on four events. The overall evaluation results are summarized
in Table 1 for 30minutes ahead prediction and Table 2 for 60minutes
ahead prediction, which both show that based on all four events: (1)
our model performed better than the others; and (2) all deep learn-
ing models had advantages compared with existing methodologies
(CityMomentum and VAR). In particular, we could also find that (1)
the superiority of ConvLSTM to CNN on video-like modeling tasks;
(2) Encoder-Decoder architecture had the advantage on multi-step
sequential prediction task; and (3) the effectiveness of mutlitask
learning on enhancing the correlated tasks.
Performance on density: We also verified the performance of
our system by using a times-series evaluation over the event day
to show the ground-truth and predicted density for selected areas
(Tokyo Station Area and Shinjuku Station Area) in the city. Each
area consist of 3×3 neighboring mesh-grids, with Tokyo Station
and Shinjuku Station locating at the central mesh-grid respectively.

From Fig.7, we can straightforwardly confirm the effectiveness of
ourmodel for 60minutes ahead prediction and its high deployability
for a real-world online event crowd management system. Referring
to the normal situation (prediction result of HistoricalAverage)
shown in the figure, we can find that the densities on event days
differ a lot from normal situations. Furthermore, even comparing
these four events, the density patterns are quite different with each
other. This could further demonstrate the crowd management at
event situations is really challenging and our online prediction
system can be so indispensable for these special cases.

7 CONCLUSION
In this study, we built a data-driven intelligent system called Deep-
UrbanEvent to predict citywide crowd dynamics at big events in
an analogous manner to a video prediction task. We proposed to
decompose crowd dynamics into crowd density and crowd flow and
designed a Multitask ConvLSTM Encoder-Decoder architecture to
simultaneously predict multiple steps of crowd density and crowd
flow for the future time period. The experimental results based on
four big real-world events demonstrated the superior performance
of our proposed model compared with the baseline methods. How-
ever, our method can still be improved in the following aspects.
(1) Transportation network data and other types of heterogeneous
data such as the census data can be utilized to improve the per-
formance. (2) Current dataset contained approximately 1% of the
total population of Japan. We need to collect more trajectory data
from other sources and design reasonable scaling factors in order
to predict crowd dynamics closer to the reality.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2121

ACKNOWLEDGMENTS
This work was supported by Leading Initiative for Excellent Young
Researchers (LEADER) Program and Grant in-Aid for Scientific
Research B (17H01784) of Japans Ministry of Education, Culture,
Sports, Science, and Technology(MEXT); JST, Strategic Interna-
tional Collaborative Research Program (SICORP); the New Energy
and Industrial Technology Development Organization (NEDO).

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
http://tensorflow.org/ Software available from tensorflow.org.

[2] Yasunori Akagi, Takuya Nishimura, Takeshi Kurashima, and Hiroyuki Toda. 2018.
A Fast and Accurate Method for Estimating People Flow from Spatiotemporal
Population Data.. In IJCAI. 3293–3300.

[3] Yoshua Bengio. 2009. Learning deep architectures for AI. Foundations and trends®
in Machine Learning 2, 1 (2009), 1–127.

[4] Pablo Samuel Castro, Daqing Zhang, and Shijian Li. 2012. Urban traffic modelling
and prediction using large scale taxi GPS traces. In Pervasive Computing. Springer,
57–72.

[5] François Chollet. 2015. keras. https://github.com/fchollet/keras.
[6] Zipei Fan, Xuan Song, and Ryosuke Shibasaki. 2014. CitySpectrum: a non-

negative tensor factorization approach. In Proceedings of the 2014 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing. ACM, 213–223.

[7] Zipei Fan, Xuan Song, Ryosuke Shibasaki, and Ryutaro Adachi. 2015. CityMo-
mentum: an online approach for crowd behavior prediction at a citywide level.
In Proceedings of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing. ACM, 559–569.

[8] Zhihan Fang, Fan Zhang, Ling Yin, and Desheng Zhang. 2018. MultiCell: Urban
Population Modeling Based on Multiple Cellphone Networks. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 3 (2018), 106.

[9] Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng
Jin. 2018. DeepMove: Predicting Human Mobility with Attentional Recurrent
Networks. In Proceedings of the 2018 World Wide Web Conference on World Wide
Web. International World Wide Web Conferences Steering Committee, 1459–
1468.

[10] Takashi Fuse and Keita Kamiya. 2017. Statistical anomaly detection in human
dynamics monitoring using a hierarchical dirichlet process hidden Markov model.
IEEE Transactions on Intelligent Transportation Systems 18, 11 (2017), 3083–3092.

[11] Michiel Hermans and Benjamin Schrauwen. 2013. Training and analysing deep
recurrent neural networks. In Advances in Neural Information Processing Systems.
190–198.

[12] Minh X Hoang, Yu Zheng, and Ambuj K Singh. 2016. Forecasting citywide crowd
flows based on big data. ACM SIGSPATIAL (2016).

[13] Wenhao Huang, Guojie Song, Haikun Hong, and Kunqing Xie. 2014. Deep
architecture for traffic flow prediction: Deep belief networks with multitask
learning. Intelligent Transportation Systems, IEEE Transactions on 15, 5 (2014),
2191–2201.

[14] Tatsuya Konishi, Mikiya Maruyama, Kota Tsubouchi, and Masamichi Shimosaka.
2016. CityProphet: city-scale irregularity prediction using transit app logs. In
Proceedings of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing. ACM, 752–757.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[16] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[17] Defu Lian, Cong Zhao, Xing Xie, Guangzhong Sun, Enhong Chen, and Yong Rui.
2014. GeoMF: joint geographical modeling and matrix factorization for point-of-
interest recommendation. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 831–840.

[18] Bin Liu, Yanjie Fu, Zijun Yao, and Hui Xiong. 2013. Learning geographical
preferences for point-of-interest recommendation. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
1043–1051.

[19] Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. 2015.
Traffic flow prediction with big data: a deep learning approach. Intelligent
Transportation Systems, IEEE Transactions on 16, 2 (2015), 865–873.

[20] Xiaolei Ma, Zhimin Tao, Yinhai Wang, Haiyang Yu, and Yunpeng Wang. 2015.
Long short-termmemory neural network for traffic speed prediction using remote
microwave sensor data. Transportation Research Part C: Emerging Technologies
54 (2015), 187–197.

[21] Xiaolei Ma, Haiyang Yu, Yunpeng Wang, and Yinhai Wang. 2015. Large-scale
transportation network congestion evolution prediction using deep learning
theory. PloS one 10, 3 (2015), e0119044.

[22] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and An-
drewYNg. 2011. Multimodal deep learning. In Proceedings of the 28th international
conference on machine learning (ICML-11). 689–696.

[23] Anastasios Noulas, Salvatore Scellato, Neal Lathia, and Cecilia Mascolo. 2012.
Mining user mobility features for next place prediction in location-based services.
In Data mining (ICDM), 2012 IEEE 12th international conference on. IEEE, 1038–
1043.

[24] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[25] Chaoming Song, Tal Koren, PuWang, andAlbert-László Barabási. 2010. Modelling
the scaling properties of human mobility. Nature Physics 6, 10 (2010), 818–823.

[26] Xuan Song, Quanshi Zhang, Yoshihide Sekimoto, Teerayut Horanont, Satoshi
Ueyama, and Ryosuke Shibasaki. 2013. Modeling and probabilistic reasoning of
population evacuation during large-scale disaster. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
1231–1239.

[27] Akihito Sudo, Takehiro Kashiyama, Takahiro Yabe, Hiroshi Kanasugi, Xuan Song,
Tomoyuki Higuchi, Shin’ya Nakano, Masaya Saito, and Yoshihide Sekimoto. 2016.
Particle filter for real-time human mobility prediction following unprecedented
disaster. In Proceedings of the 24th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems. ACM, 5.

[28] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104–
3112.

[29] Yusuke Tanaka, Tomoharu Iwata, Takeshi Kurashima, Hiroyuki Toda, and
Naonori Ueda. 2018. Estimating Latent People Flow without Tracking Indi-
viduals.. In IJCAI. 3556–3563.

[30] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. 2010. Stacked denoising autoencoders: Learning useful repre-
sentations in a deep network with a local denoising criterion. Journal of Machine
Learning Research 11, Dec (2010), 3371–3408.

[31] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. 2015. Convolutional LSTM network: A machine learning ap-
proach for precipitation nowcasting. In Advances in neural information processing
systems. 802–810.

[32] Fengli Xu, Tong Xia, Hancheng Cao, Yong Li, Funing Sun, and Fanchao Meng.
2018. Detecting Popular Temporal Modes in Population-scale Unlabelled Trajec-
tory Data. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 2, 1 (2018), 46.

[33] Yu Yang, Fan Zhang, and Desheng Zhang. 2018. SharedEdge: GPS-Free Fine-
Grained Travel Time Estimation in State-Level Highway Systems. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 1 (2018),
48.

[34] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua
Gong, Jieping Ye, and Zhenhui Li. 2018. Deep multi-view spatial-temporal net-
work for taxi demand prediction. In Thirty-Second AAAI Conference on Artificial
Intelligence.

[35] Zhuoning Yuan, Xun Zhou, and Tianbao Yang. 2018. Hetero-ConvLSTM: A Deep
Learning Approach to Traffic Accident Prediction on Heterogeneous Spatio-
Temporal Data. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. ACM, 984–992.

[36] Huichu Zhang, Yu Zheng, and Yong Yu. 2018. Detecting Urban Anomalies Using
Multiple Spatio-Temporal Data Sources. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 2, 1 (2018), 54.

[37] Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep Spatio-Temporal Residual
Networks for Citywide Crowd Flows Prediction.. In AAAI. 1655–1661.

[38] Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, and Xiuwen Yi. 2016. DNN-
based prediction model for spatio-temporal data. In Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems. ACM, 92.

[39] Vincent W Zheng, Yu Zheng, Xing Xie, and Qiang Yang. 2010. Collaborative
location and activity recommendations with GPS history data. In Proceedings of
the 19th international conference on World wide web. ACM, 1029–1038.

[40] Jingbo Zhou, Hongbin Pei, and Haishan Wu. 2018. Early Warning of Human
Crowds Based on Query Data from Baidu Maps: Analysis Based on Shanghai
Stampede. In Big Data Support of Urban Planning and Management. Springer,
19–41.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2122

http://tensorflow.org/
https://github.com/fchollet/keras

	Abstract
	1 Introduction
	2 Related Work
	3 Data Source
	4 Citywide Crowd Dynamics Modeling
	5 Deep Sequential Learning Architecture
	5.1 Stacked ConvLSTM Architecture
	5.2 CNN AutoEncoder for Crowd Flow
	5.3 Multitask ConvLSTM Encoder and Decoder

	6 Experiment
	6.1 Settings
	6.2 Performance Evaluation

	7 Conclusion
	Acknowledgments
	References

